Расчет плиты перекрытия на несущую способность

Расчет несущей способности железобетонной плиты.

В данной статье рассматривается полный расчет несущей способности железобетонной плиты сложной формы с применением расчетных комплексов типа SCAD для определения внутренних усилий и ручной расчет прочности в соответствии со всеми формулами СНиП и ссылками на них.

Пример расчета несущей способности железобетонной плиты

Для определения внутренних усилий применим SCAD и получим изополя моментов М (для расчета изгибаемого элемента используются данные о момента).

Усилия:

Для расчета примем наибольший изгибающий момент M = 9 тс м = 9 /101,97162123 = 0,08826 МН м;

Размеры сечения:

Примем для подбора армирования и его проверки 1 погонный метр плиты

— Высота сечения h = 16 см = 16 /100 = 0,16 м;
— Ширина прямоугольного сечения b = 100 см = 100 /100 = 1 м;

Толщина защитного слоя:

— Расстояние от равнодействующей усилий в арматуре S до грани сечения a = 2,5 см = 2,5 /100 = 0,025 м;

— Расстояние от равнодействующей усилий в арматуре S» до грани сечения a» = 2,5 см = 2,5 /100 = 0,025 м;

Площадь наиболее растянутой продольной арматуры:

(Стержневая арматура, диаметром 14 мм; 6 шт.):

— Площадь растянутой арматуры As = 9,2 см 2 = 9,2 /10000 = 0,00092 м 2 ;

Площадь сжатой или наименее растянутой продольной арматуры:

(Стержневая арматура, диаметром 14 мм; 6 шт.):
— Площадь сжатой арматуры A»s = 9,2 см2 = 9,2 /10000 = 0,00092 м2;

Результаты расчета:

1) Определение нормативного сопротивления бетона

Класс бетона — B30.

Нормативное значение сопротивления бетона осевому сжатию для предельных состояний первой группы:
По табл. 2.1-1 СП 52-101 Rbn = 22 МПа .

Класс бетона — B30.

Нормативное значение сопротивления бетона осевому растяжению для предельных состояний первой группы:
По табл. 2.1-1 СП 52-101 Rbtn = 1,75 МПа.

2) Расчетное сопротивление бетона

При первой группе предельных состояний

Коэффициент надежности по бетону при сжатии: gb=1,3.

Назначение класса бетона — по прочности на сжатие.

Коэффициент надежности по бетону при растяжении: gbt=1,5.

Расчетное сопротивление бетона осевому сжатию: Rb = Rbn/gb=22/1,3 = 16,92308 МПа (формула (2.1-1); п. 2.1.2.2 СП 52-101).

Расчетное сопротивление бетона осевому растяжению: Rbt = Rbtn/gbt=1,75/1,5 = 1,16667 МПа (формула (2.1-2); п. 2.1.2.2 СП 52-101).

При второй группе предельных состояний

Расчетное значение сопротивления бетона осевому сжатию для предельных состояний второй группы: Rb, ser = Rbn =22 МПа (формула (2.1-1); п. 2.1.2.2 СП 52-101).

Расчетное значение сопротивления бетона осевому растяжению для предельных состояний второй группы: Rbt, ser = Rbtn =1,75 МПа (формула (2.1-2); п. 2.1.2.2 СП 52-101).

3) Учет особенностей работы бетона в конструкции

Действие нагрузки — продолжительное.

Коэффициент условия работы бетона, учитывающий длительность действия нагрузки: gb1=0,9.

Высота слоя бетонирования — r 1,5 м.

Коэффициент условия работы бетона, учитывающий попеременное замораживание и оттаивание бетона: gb3=1.

Для надземной конструкции, при расчетной температуре наружного воздуха в зимний период не менее -40 град.:

Коэффициент условия работы бетона, учитывающий характер разрушения бетонных конструкций: gb4=1.

Расчетное сопротивление бетона осевому сжатию: Rb = gb1 gb3 gb4 Rb =0,9 · 1 · 1 · 16,92308 = 15,23077 МПа.

Расчетное сопротивление бетона осевому растяжению: Rbt = gb1 Rbt =0,9 · 1,16667 = 1,05 МПа .

4) Расчетные значения прочностных характеристик арматуры

Класс арматуры — A240.

Расчетное сопротивление продольной арматуры растяжению: Rs=215 МПа.

Расчетное сопротивление продольной арматуры сжатию: Rsc=215 МПа.

Расчетное сопротивление поперечной арматуры сжатию: Rsw=170 МПа.

5) Значение модуля упругости арматуры

Модуль упругости арматуры: Es=200000 МПа.

6) Определение граничной относительной высоты сжатой зоны

Относительная деформация растянутой арматуры: es, el = Rs/Es=215/200000 = 0,00108(формула (3.2-2); п. 3.2.2.6 СП 52-101).

Относительная деформация сжатого бетона при sb=Rb: eb, ult=0,0035.

Граничная относительная высота сжатой зоны: xR = 0,8/(1+es, el/eb, ult) = =0,8/(1+0,00108/0,0035) = 0,61135 м (формула (3.2-1); п. 3.2.2.6 СП 52-101).

7) Расчет изгибаемых элементов

Рабочая высота сечения: ho = h-a=0,16-0,025 = 0,135 м.

Предельный изгибающий момент: Mult = Rs As (ho-a») = =215 · 0,00092 · (0,135-0,025) = 0,02176 МН м (формула (3.2-9); п. 3.2.2.13 СП 52-101).

Определяем высоту сжатой зоны без учета сжатой арматуры.

Высота сжатой зоны: x = Rs As/(Rb b)=215 · 0,00092/(15,23077 · 1) = 0,01299 м.

Т.к. x=0,01299 м

Рабочая высота сечения: ho = h-a=0,16-0,025 = 0,135 м .

Коэффициент армирования: ms = As/(b ho) 100=0,00092/(1 · 0,135) · 100 = 0,68148 % .

ms t 0,1 % (681,48% от предельного значения) — условие выполнено.

При расчете в таком развернутом виде у нас ни разу не возникло проблем при прохождении экспертиз.

Расчет монолитной плиты перекрытия на примере квадратной и прямоугольной плит, опертых по контуру

При создании домов с индивидуальной планировкой дома, как правило, застройщики сталкиваются с большим неудобством использования заводских панелей. С одной стороны, их стандартные размеры и форма, с другой – внушительный вес, из-за которого не обойтись без привлечения подъемной строительной техники.

Для перекрытия домов с комнатами разного размера и конфигурации, включая овал и полукруг, идеальным решением являются монолитные ж/б плиты. Дело в том, что по сравнению с заводскими они требуют значительно меньших денежных вложений как на покупку необходимых материалов, так и на доставку и монтаж. К тому же у них значительно выше несущая способность, а бесшовная поверхность плит очень качественная.

Почему же при всех очевидных преимуществах не каждый прибегает к бетонированию перекрытия? Вряд ли людей отпугивают более длительные подготовительные работы, тем более что ни заказ арматуры, ни устройство опалубки сегодня не представляет никакой сложности. Проблема в другом – не каждый знает, как правильно выполнить расчет монолитной плиты перекрытия.

Преимущества устройства монолитного перекрытия ↑

Монолитные железобетонные перекрытия причисляют к категории самых надежных и универсальных стройматериалов.

    по данной технологии возможно перекрывать помещения практически любых габаритов, независимо от линейных размеров сооружения. Единственное при необходимости перекрыть больших пространств возникает необходимость в установке дополнительных опор; они обеспечивают высокую звукоизоляцию. Несмотря на относительно небольшую толщину (140 мм), они способны полностью подавлять сторонние шумы; с нижней стороны поверхность монолитного литья – гладкая, бесшовная, без перепадов, поэтому чаще всего подобные потолки отделывают только при помощи тонкого слоя шпаклевки и окрашивают; цельное литье позволяет возводить выносные конструкции, к примеру, создать балкон, который составит одну монолитную плиту с перекрытием. Кстати, подобный балкон значительно долговечнее.
    К недостаткам монолитного литья можно отнести необходимость использования при заливке бетона специализированного оборудования, к примеру, бетономешалок.

Для конструкций из легкого материала типа газобетона больше подходят сборно-монолитные перекрытия. Их выполняют из готовых блоков, к примеру, из керамзита, газобетона или других аналогичных материалов, после чего заливают бетоном. Получается, с одной стороны, легкая конструкция, а с другой – она служит монолитным армированным поясом для всего строения.

По технологии устройства различают:

    монолитное балочное перекрытие; безбалочное – это один из самых распространенных вариантов, расходы на материалы здесь меньше, поскольку нет необходимости закупать балки и обрабатывать перекрытия. имеющие несъемную опалубку; по профнастилу. Наиболее часто такую конструкцию используют для создания терасс, при строительстве гаражей и других подобных сооружений. Профлисты играют роль несгибаемой опалубки, на которую заливают бетон. Функции опоры будет выполнять каркас из металла, собранный из колонн и балок.


Обязательные условия получения качественного и надежного монолитное перекрытие по профнастилу:

    чертежи, в которых указаны точнейшие размеры сооружения. Допустимая погрешность – до миллиметра; расчет монолитной плиты перекрытия, где учтены создаваемые ею нагрузки.

Профилированные листы позволяют получить ребристое монолитное перекрытие, отличающееся большей надежностью. При этом значительно сокращаются затраты на бетон и стержни арматуры.

Расчет безбалочного перекрытия ↑

Перекрытие этого типа представляет из себя сплошную плиту. Опорой для нее служат колонны, которые могут иметь капители. Последние необходимы тогда, когда для создания требуемой жесткости прибегают к уменьшению расчетного пролета.

Расчет монолитной плиты, опертой по контуру ↑

Параметры монолитной плиты ↑

Понятно, что вес литой плиты напрямую зависит от ее высоты. Однако, помимо собственно веса она испытывает также определенную расчетную нагрузку, которая образуется в результате воздействия веса выравнивающей стяжки, финишного покрытия, мебели, находящихся в помещении людей и другое. Было бы наивно предположить, что кому-то удастся полностью предугадать возможные нагрузки или их комбинации, поэтому в расчетах прибегают к статистическим данным, основываясь на теории вероятностей. Таким путем получают величину распределенной нагрузки.


Здесь суммарная нагрузка составляет 775 кг на кв. м.

Одни из составляющих могут носить кратковременный характер, другие – более длительный. Чтобы не усложнять наши расчеты, условимся принимать распределительную нагрузку qв временной.

Как рассчитать наибольший изгибающий момент ↑

Это один из определяющих параметров при выборе сечения арматуры.

Напомним, что мы имеем дело с плитой, которая оперта по контуру, то есть, она будет выступать в роли балки не только относительно оси абсцисс, но и оси аппликат (z), и будет испытывать сжатие и растяжение в обеих плоскостях.

Как известно, изгибающий момент по отношению к оси абсцисс балки с опорой на две стены, имеющей пролет ln вычисляют по формуле mn = qnln 2 /8 (для удобства за ее ширину принят 1 м). Очевидно, что если пролеты равны, то равны и моменты.

Если учесть, что в случае квадратной плиты нагрузки q1 и q2 равны, возможно допустить, что они составляют половину расчетной нагрузки, обозначаемой q. Т. е.

Иначе говоря, можно допустить, что арматура, уложенная параллельно осям абсцисс и аппликат, рассчитывается на один и тот же изгибающий момент, который вдвое меньше, нежели тот же показатель для плиты, которая в качестве опоры имеет две стены. Получаем, что максимальное значение расчетного момента составляет:

Что же касается величины момента для бетона, то если учесть, что он испытывает сжимающее воздействие одновременно в перпендикулярных друг другу плоскостях, то ее значение будет больше, а именно,

Как известно, для расчетов требуется единая величина момента, поэтому в качестве его расчетного значения берут среднее арифметическое от Ма и Мб, которое в нашем случае равно 1472.6 кгс·м:

Как выбрать сечение арматуры ↑

В качестве примера произведем расчет сечения стержня по старой методике и сразу отметим, что конечный результат расчета по любой другой дает минимальную погрешность.

Какой бы способ расчеты вы ни выбрали, не надо забывать, высота арматуры в зависимости от ее расположения относительно осей x и z будет различаться.

В качестве значения высот предварительно примем: для первой оси h01 = 130 мм, для второй – h02 = 110 мм. Воспользуемся формулой А0n = M/bh 2 0nRb. Соответственно получим:

    А01 = 0.0745 А02 = 0.104

Из представленной ниже вспомогательной таблицы найдем соответствующие значения η и ξ и посчитаем искомую площадь по формуле Fan= M/ηh0nRs.

    Fa1 = 3,275 кв. см. Fa2 = 3,6 кв. см.

Фактически, для армирования 1 пог. м необходимо по 5 арматурных стержня для укладки в продольном и поперечном направлении с шагом 20 см.

Для выбора сечения можно воспользоваться нижележащей таблицей. К примеру, для пяти стержней ⌀10 мм получаем площадь сечения, равной 3,93 кв. см, а для 1 пог. м она будет в два раза больше – 7,86 кв. см.

Сечение арматуры, проложенной в верхней части, было взято с достаточным запасом, поэтому число арматуры в нижнем слое можно уменьшить до четырех. Тогда для нижней части площадь, согласно таблице составит 3,14 кв. см.

Пример расчета монолитной плиты перекрытия в виде прямоугольника ↑

Очевидно, что в подобных конструкциях момент, действующий по отношению к оси абсцисс, не может равняться его значению, относительно оси аппликат. Причем чем больше разброс между ее линейными размерами, тем больше она будет похожа на балку с шарнирными опорами. Иначе говоря, начиная с какого-то момента, величина воздействия поперечной арматуры станет постоянной.

На практике неоднократно была показана зависимость поперечного и продольного моментов от значения λ = l2 / l1:

    при λ > 3, продольный больше поперечного в пять раз; при λ ≤ 3 эту зависимость определяют по графику.

Допустим, требуется рассчитать прямоугольную плиту 8х5 м. Учитывая, что расчетные пролеты это и есть линейные размеры помещения, получаем, что их отношение λ равно 1.6. Следуя кривой 1 на графике, найдем соотношение моментов. Оно будет равно 0.49, откуда получаем, что m2 = 0.49*m1.

Далее, для нахождения общего момента значения m1 и m2 необходимо сложить. В итоге получаем, что M = 1.49*m1. Продолжим: подсчитаем два изгибающих момента – для бетона и арматуры, затем с их помощью и расчетный момент.

Теперь вновь обратимся к вспомогательной таблице, откуда находим значения η1, η2 и ξ1, ξ2. Далее, подставив найденные значения в формулу, по которой вычисляют площадь сечения арматуры, получаем:

    Fa1 = 3.845 кв. см; Fa2 = 2 кв. см.

В итоге получаем, что для армирования 1 пог. м. плиты необходимо:

    продольная арматура:пять 10-миллиметровых стержней, длина 520 -540 см, Sсеч. – 3.93 кв. см; поперечная арматура: четыре 8-миллиметровых стержня, длина 820-840 см, Sсеч. – 2.01 кв.см.

Самостоятельный расчет плиты перекрытия: считаем нагрузку и подбираем параметры будущей плиты

Монолитная плита перекрытия всегда была хороша тем, что изготавливается без применения подъемных кранов – все работы ведутся прямо на месте. Но при всех очевидных преимуществах сегодня многие отказываются от такого варианта из-за того, что без специальных навыков и онлайн-программ достаточно сложно точно определить такие важные параметры, как сечение арматуры и площадь нагрузки.

В этой статье мы поможем вам изучить расчет плиты перекрытия и его нюансы, а также познакомим с основными данными и документами. Современные онлайн-калькуляторы – дело хорошее, но если речь идет о таком ответственном моменте, как перекрытие жилого дома, советуем вам перестраховаться и лично все пересчитать!

Содержание

Шаг 1. Составляем схему перекрытия

Давайте начнем с того, что монолитная железобетонная плита перекрытия – это конструкция, которая лежит на четырех несущих стенах, т.е. опирается по своему контуру.

И не всегда плита перекрытия представляет собой правильный четырехугольник. Тем более, что сегодня проекты жилых домов отличаются вычурностью и многообразием сложных форм.

В этой статье мы научим вас рассчитывать нагрузку на 1 кв. метр плиты, а общую нагрузку вам нужно будет вычислять по математическим формулам. Если сложно – разбейте площадь плиты на отдельные геометрические фигуры, рассчитайте нагрузку каждой, затем просто суммируйте.

Шаг 2. Проектируем геометрию плиты

Теперь рассмотрим такие основные понятия, как физическая и проектная длина плиты. Т.е. физическая длина перекрытия может быть любой, а вот расчетная длина балки уже имеет другое значение. Ею называют минимальное расстояние между наиболее удаленными соседними стенами. По факту физическая длина плиты всегда длиннее, чем проектная длина.

Вот хороший видео-урок о том, как производится расчет монолитной плиты перекрытия:

Важный момент: несущий элемент плиты может быть как шарнирная бесконсольная балка, так и балка жесткого защемления на опорах. Мы будем приводить пример расчета плиты на бесконсольную балку, т.к. такая встречается чаще.

Чтобы рассчитать всю плиту перекрытия, нужно рассчитать один ее метр для начала. Профессиональные строители используют для этого специальную формулу. Так, высота плиты всегда значится как h, а ширина как b. Давайте рассчитаем плиту с такими параметрами: h=10 см, b=100 см. Для этого вам нужно будет познакомиться с такими формулами:

Шаг 3. Рассчитываем нагрузку

Плиту перекрытия легче всего рассчитать, если она имеет квадратную форму и если вы знаете, какая нагрузка запланирована. При этом какая-то часть нагрузки будет считаться длительной, которую определяет количество мебели, техники и этажности, а другая – кратковременной, как строительное оборудование во время стройки.

Кроме того, плита перекрытия должна выдерживать и другого рода нагрузки, как статистические и динамические, при этом сосредоточенная нагрузка всегда измеряется в килограммах или в ньютонах (например, нужно будет ставить тяжелую мебель) и распределительная нагрузка, измеряемая в килограммах и силе. Конкретно сам расчет плиты перекрытия всегда нацелен на определение распределительный нагрузки.

Вот ценные рекомендации, какой должна быть нагрузка на плиту перекрытия в плане расчета на изгиб:

Еще один немаловажный момент, который тоже нужно учитывать: на какие стены будет опираться монолитная плита перекрытия? На кирпичные, каменные, бетонные, пенобетонные, газобетонные или из шлакоблока? Вот почему так важно рассчитать плиту не только с позиции нагрузки на нее, но и с точки зрения ее собственного веса. Особенно если ее устанавливают на недостаточно прочные материалы.

Сам расчет плиты перекрытия, если мы говорим о жилом доме, всегда нацелен на нахождение распределительной нагрузки. Она рассчитывается по формуле: q1=400 кг/м². Но к этому значению добавьте вес самой плиты перекрытия, а это обычно 250 кг/м², а бетонная стяжка и чистовой пол дадут еще дополнительные 100 кг/м². Итого имеем 750 кг/м².

Учитывайте при этом, что изгибающее напряжение плиты, которая по своему контуру опирается на стены, всегда приходится на ее центр.

Шаг 4. Подбираем класс бетона

Именно монолитную плиту перекрытия, в отличие от деревянных или металлических балок, рассчитывают по поперечному сечению. Ведь бетон само по себе – неоднородный материал, и его предел прочности, текучести и других механических характеристик имеет значительный разброс.

Что удивительно, даже при изготовлении образцов из бетона, даже из одного замеса получаются разные результаты. Ведь здесь много зависит от таких факторов, как загрязненность и плотности замеса, способов уплотнения и других технологических факторов, даже так называемой активности цемента.

При расчете монолитной плиты перекрытия всегда учитывается и класс бетона, и класс арматуры. Само сопротивление бетона принимается всегда на значение, на какое идет сопротивление арматуры. Т.е., по сути, на растяжение работает именно арматура. Сразу оговоримся, что здесь существует несколько расчетных схем, которые учитывают разные факторы. Например, силы, которые определяют основные параметры поперечного сечения по формулам, или расчет относительно центра тяжести сечения.

Шаг 5. Подбираем сечение арматуры

Разрушение в плитах перекрытия происходит тогда, когда арматура достигает своего предела прочности при растяжении или текучести. Т.е. почти все зависит от нее. Второй момент, если прочность бетона уменьшается в 2 раза, тогда и несущая способность армирования плиты уменьшается с 90 на 82%. Поэтому доверимся формулам:

Происходит армирование при помощи обвязки арматуры из сварной сетки. Ваша главная задача – рассчитать процент армирования поперечного профиля продольными стержнями арматуры.

Как вы наверняка не раз замечали, самые распространенные ее виды сечения – это геометрические фигуры: форма круга, прямоугольника, трапеции. А расчет самой площади сечения происходит по двум противоположным углам, т.е. по диагонали. Кроме того, учитывайте, что определенную прочность плите перекрытия придает также дополнительное армирование:

Если рассчитывать арматуру по контуру, тогда вы должны выбрать определенную площадь и просчитывать ее последовательно. Далее, на самом объекте проще рассчитывать сечение, если взять ограниченной замкнутой объект, как прямоугольник, круг или эллипс и производить расчет в два этапа: с использованием формирования внешнего и внутреннего контура.

Например, если вы рассчитываете армирование прямоугольного монолитного перекрытия в форме прямоугольника, тогда нужно отметить первую точку в вершине одного из углов, затем отметить вторую и произвести расчет всей площади.

Согласно СНиПам 2.03.01-84 «Бетонные и железобетонные конструкции» сопротивление растягивающим усилиям в отношении арматуры А400 составляет Rs=3600 кгс/см², или 355 МПа, а вот для бетона класса B20 значение Rb=117кгс/см² или 11.5 МПа:

Согласно нашим вычислениям, для армирования 1 погонного метра понадобится 5 стержней с сечением 14 мм и с ячейкой 200 мм. Тогда площадь сечения арматуры будет равняться 7.69 см². Чтобы обеспечить надежность по поводу прогиба, высоту плиты завышают до 130-140 мм, тогда сечение арматуры составляет 4-5 стержней по 16 мм.

Итак, зная такие параметры, как необходимая марка бетона, тип и сечение арматуры, которые нужны для плиты перекрытия, вы можете быть уверены в ее надежности и качестве.

Как сделать расчет монолитной плиты перекрытия?

Если застройщик выбрал проект дома со свободной планировкой, он скорее всего столкнется с проблемой нестандартного перекрытия.

Следовательно, ему придется отказаться от заводских панелей и установить монолитную плиту перекрытия (МПП).

Это очень экономичный вариант, к которому прибегают даже при возведении типовых помещений.

Для их установки не требуется дорогостоящая грузоподъемная техника, они имеют более высокие производственные характеристики, а бесшовная поверхность перекрытий существенно экономит средства заказчика на отделочные работы.

Зачем нужно делать?

Застройщик, перед тем как устанавливать перекрытие, должен выполнить расчет этой ответственной конструкции. Поскольку эти вычисления относятся к разряду сложных, лучше поручить их выполнение специалистам.

Необходимость такого расчета объясняется особой ролью плиты в обеспечении прочности и долговечности домостроения. Она принимает на себя нагрузки от расположенных выше конструкций и передает их через стенки на основание дома. Поэтому правильно выполненный расчет МПП имеет важное значение для дома в целом.

Если конструкция будет установлена без применения предварительных расчетов, она может не выдержать фактическую весовую нагрузку, что приведет к массовому процессу трещинообразования и даже вызвать более серьезные дефекты в конструкции, вплоть до полного ее разрушения.

Поэтому главной задачей такого расчета является гарантия требуемого запаса прочности. Для этой цели нужно рассчитать габариты плиты, планируемые нагрузки на МПП и профессионально выбрать диаметры поперечной и продольной арматуры.

    Определяют геометрические характеристики МПП, класс арматуры и марку бетона. В момент выбора марки бетона необходимо принять во внимание, что данный стройматериал неоднородный, в связи, с чем его физико-механические характеристики проявляют себя неравномерно.

Сопротивление бетонного слоя на сжатие должно приниматься не выше, чем соответствующий показатель у арматуры, поскольку на растяжение фактически работает только армокаркас. Чаще всего, при возведении таких конструкций в домах применяют бетон марок м 2 50/350 (В 20/25). Для армокаркаса применяют арматура А400/500.

  • Высчитывают все нагрузки на МПП. С этой целью необходимо суммировать вес плиты и вертикальные нагрузки. Толщину ее определяют в зависимости от пролета, а массу, учитывая плотность определенной марки бетона. Согласно СНиП нормативные нагрузки от расположенных выше стройконструкций на проектируемое МПП для жилых помещений принимают в диапазоне 250-800 кг/м 2 .
  • Определяют предельно допустимый изгибающий момент. Наибольший показатель такого напряжения, всегда воздействует на центр конструкции, при полном опирании ее по периметру на стенки.
  • Подбирают минимально допустимое сечение рифленой арматуры. Класс ее подбирается по значению ξR, определяющему дистанция от центра сечения прутьев армокаркаса до нижнего среза перекрытия. Его наименьший показатель должен быть не менее Д арматуры, не ниже 10 мм. Увеличение этого расстояния приводит к повышению прочности сцепления арматуры в бетонной массе.
  • Справка. Нормативами определены предельные минимальные диаметры: не менее 10 мм для 2-х рядного каркаса и 12 мм для однорядного, тип вязки каркаса определяется длиной перекрытия.

    Какие характеристики следует учитывать?

    Самые важные параметры, которые учитываются при расчете — это длина и ширина МПП. При этом нужно учитывать, что в реальности длина перекрытия, возможно, будет отличаться от расчетного параметра пролета. Под пролетом подразумевают расстояние между несущими стенками, выполняющими роль опор, поскольку они должны поддерживать плиту. Отсюда следует, что пролет — это характеристика объекта в ширину и в длину. Для определения пролета применяют обычную рулетку, замеряя расстояние между стенками.

    На расчет МПП значительное влияние оказывает варианты размещения опор. Плита по-разному устанавливается на несущие стенки, либо в роли балки с жестким защемлением на несущих стенах в качестве опор, либо как балка консольного/бесконсольного типа.

    В роли опор для перекрытий служат стенки, возведенные из различных стройматериалов: традиционный кирпич или блоки из легких бетонов. Поэтому расчет МПП выполняется с учетом стенового материала, их способности выдерживать собственный вес. Если для кирпича проблем не существует, то легкобетонные блоки должны быть предварительно усилены армопоясом, рассчитанного на конкретную массу МПП.

    Часто расчет монолитной конструкции выполняется для разновидности плиты в качестве шарнирно-опертой балки бесконсольного типа.

    Формулы и примеры

    Основанием для расчета монолитной плиты перекрытия являются СНиП No 52-01, изданный в 2003 году и СП No 52-101, также изданный в 2003 году. В этих государственных актах изложены все требования к железобетонным и бетонным конструкциям.

    В качестве примера расчета предлагается рассмотреть квадратную монолитную плиту, устанавливаемую на несущие стены по всему контуру.

    Исходные данные:

    • стены изготовлены из традиционного кирпича, 510 мм;
    • план помещения, 5.1х5.1 м;
    • опирание МПП, 250 мм;
    • полные габариты МПП, 5.6х5.6 м;
    • расчетный пролет: l1 = l2 = 5.1 м;
    • бетон В-20, сопротивление на сжатие Rб = 11.51 МПa = 117.1 кгс/см 2 и плотностью 2300 кг/м 3 ;
    • арматура кл. AIII, сопротивление на растяжение Rs = 356 МПa =3610 кгс/см 2 .

    Поскольку, согласно строительным нормам нормативные нагрузки от расположенных выше стройконструкций на проектируемое перекрытие для жилых помещений принимают в диапазоне от 200 до 800 кг/м 2 , специалисты рекомендуют в качестве распределенной нагрузки для перекрытия жилого дома выбрать qвр = 400 кг/м 2 . Как правило, она учитывает среднестатистические нагрузки жилых помещений: стяжка пола, мебель, бытовое оборудование и вес жильцов.

    Такую нагрузку условно считают временной, поскольку в будущем возможны перепланировки и ремонты, которые могут повлиять на ее итоговый размер. Поскольку высота перекрытия в начале расчетов неизвестна, допускается ее принимать предварительно, с учетом среднестатистических показателей h = 17 см, тогда собственная нагрузка МПП рассчитывается:

    Этот показатель приблизительный, вследствие того, что истинный вес 1 м 2 ЖБ перекрытия на самом деле зависит не только от объема арматуры и Д прутков, но также и от объема и размера фракций бетонных наполнителей, уровня их уплотнения и прочих факторов. Представленная нагрузка считается постоянной.

    Отсюда следует, что общая распределенная нагрузка на перекрытие будет составлять:

    q = qмпп + qвр = 391 +400 = 791 кг/м 2

    Параметры толщины плиты

    Для монолитных перекрытий противодействие железобетона растяжению по существу равняется «0». Подобный вывод следует из анализа и сравнения напряжений на растяжение, которые конкретно испытывают составляющие плиты: бетон и арматура.

    Различие между ними достигает существенное, что говорит о том, что практически полную нагрузку принимает на себя армокаркас. А вот нагрузки на сжатие ведут себя по иному — эти силы распределены равномерно вдоль вектора силы. Поэтому в результате, такое сопротивление берется по расчетному показателю.

    СНиП требует, чтобы толщина плиты была взаимосвязана с размером пролета, установив предельное соотношение 1:30. За размер пролета неизменно принимается протяжённость наиболее длинной стены. В нашем случае помещение квадратное, все стены равны 5.1 м.

    Расчет толщина монолитного перекрытия:

    5.1х30х0,1= будет 15.3 см.

    Результат ниже предварительно принятой в расчетах толщины 17 см, поэтому у расчетной плиты перекрытия будет запас прочности. Частному застройщику лучше принимать плиту перекрытия с запасом.

    Специалисты не советуют частникам проектировать огромные помещения и пролеты, поскольку толщина МПП не может превосходить предельный нормативный показатель 25 см.

    Максимальный изгибающий момент

    Нахождение наибольшего изгибающего момента зависит от схемы опирания перекрытий. Когда МПП лежит на 2-х несущих стенках, ее можно приравнивать к балке на 2-х шарнирных опорах, для простоты подсчетов ширина такой балки принимается равной 1.0 м.


    В нашем примере перекрытие опирается на 4-е несущие стенки оценивать поперечное сечение только в отношении оси X недостаточно, поскольку сжимающие/растягивающие напряжения образуются в 2-х плоскостях Х и Z.

    Расчет относительно оси Х пролета — l1 заключается в установлении изгибающего момента М1:

    Поскольку пролеты равны, изгибающий момент м 2 по оси Z будет равен М1

    При расчетной нагрузке q = q1 + q2 и плите в форме квадрата, можно определить, что q1 = q2 = 0.5q в таком случае моменты будут равны

    М1 = м 2 = q1 l12 /8 = q l12 /16 = q l22 /16

    Из этого можно сделать вывод, что арматурные прутья, укладываемые параллельно осям Х и Z, можно рассчитать на равнозначный изгибающий момент, он будет ниже в два раза, чем для перекрытий, опирающихся на 2 несущие стенки.

    Наибольший изгибающий момент для арматурных стержней:

    Мар = 791 х 5.12/16 = 1285.86 кгс·м.

    Данный показатель момента допускается применять исключительно для определения характеристик арматурного каркаса. Поскольку на бетон воздействуют сжимающие напряжения в 2-х перпендикулярных площадях, поэтому это показатель для бетона необходимо брать больше:

    Мбет = (м 2 1 + м 2 2)0.5 = Mар√2 = 1285.86·1.4140 = 1818.21 кгс·м.

    Далее можно найти среднее значение между двумя моментами:

    М = (Мар + Мбет)/2 = (1285,86+1818,21)/2 =1552,035 кгс·м.

    Для того чтобы выбрать арматуру, предварительно принимают высоты осей:

    • h01 = 135 мм;
    • h02 = 114 мм.

    Базовая формула для расчета:

    После подставления данных, получают:

    • А01 = 0.0745
    • А02= 0.104

    Полученные данные применяют для табличного определения η и ξ.


    Найденные табличные данные подставляют в выражение:

    • Faр1 = 3,275 см 2 .
    • Faр2 = 3,6 см 2 .

    По данным расчетам получают результат армирования МПП с помощью 5 арматур для установки продольно/поперечно с шагом 200 мм.


    Например, для 5-ти прутьев Д=10 мм F сечения, будет равна 3,93 см 2, а для 1 м.п она станет — 7,86 см 2 .

    Таким образом, очевидно, что F арматуры вверху армокаркаса получено с запасом. Также можно пересчитать количество стержней, например, уменьшить их до 4-х.

    О расчета монолитного перекрытия на изгиб рассказано в видео:

    Ошибки и сложности, их последствия

    Расчет монолитной плиты, практически никто не делает самостоятельно, он выполняется при проектировании дома с применением программного комплекса. Это вызвано тем, что расчет является довольно сложным даже для многих инженеров, а ошибки, допущенные в ходе выполнения расчетов, имеют высокую цену, а порой становятся катастрофическими для всего здания.

    Наиболее часто ошибки допускаются в следующих случаях:

    1. Неправильно принята схема расчета балки и ошибки в определении опор.
    2. Неточные замеры фактического пролета.
    3. Неправильно рассчитана толщина монолитной плиты с превышением соотношения 1/30.
    4. Нарушения расчетов по изгибающим моментам.
    5. Неправильно определены показатели по армокаркасу.

    Заключение

    Монолитная плита перекрытия, особенно ее современные модификации с применением в качестве несъемной опалубки из металлопрофиля, являются наиболее эффективными при строительстве домов с нестандартными проектными решениями.

    Они соответствуют всем требованиям СНиП, ГОСТ и СП по прочности, тепло-, влаго-, шумозащите и являются экономически обоснованными, поскольку не требуют применения тяжеловесных заводских плит перекрытия и аренды автокранов. Но установке таких плит должен предшествовать точный расчет конструкции, чтобы они не разрушались и не создавали аварийных ситуаций в доме.

    Максимально допустимая нагрузка на плиту перекрытия

    Для обустройства перекрытий между этажами, а также при строительстве частных объектов применяются железобетонные панели с полостями. Они являются связующим элементом в сборных и сборно-монолитных строениях, обеспечивая их устойчивость. Главная характеристика – нагрузка на плиту перекрытия. Она определяется на этапе проектирования здания. До начала строительных работ следует выполнить расчеты и оценить нагрузочную способность основы. Ошибка в расчетах отрицательно повлияет на прочностные характеристики строения.

    Нагрузка на пустотную пелиту перекрытия

    Виды пустотных панелей перекрытия

    Панели с продольными полостями применяют при сооружении перекрытий в жилых зданиях, а также строениях промышленного назначения.

    Железобетонные панели отличаются по следующим признакам:

    • размерам пустот;
    • форме полостей;
    • наружным габаритам.

    В зависимости от размера поперечного сечения пустот железобетонная продукция классифицируется следующим образом:

    • изделия с каналами цилиндрической формы диаметром 15,9 см. Панели маркируются обозначением 1ПК, 1 ПКТ, 1 ПКК, 4ПК, ПБ;
    • продукция с кругами полостями диаметром 14 см, произведенная из тяжелых марок бетонной смеси, обозначается 2ПК, 2ПКТ, 2ПКК;
    • пустотелые панели с каналами диаметром 12,7 см. Они маркируются обозначением 3ПК, 3ПКТ и 3ПКК;
    • круглопустотные панели с уменьшенным до 11,4 см диаметром полости. Применяются для малоэтажного строительства и обозначаются 7ПК.

    Виды плит и конструкция перекрытия

    Панели для межэтажных оснований отличаются формой продольных отверстий, которая может быть выполнены в виде различных фигур:

    • круга;
    • эллипса;
    • восьмигранника.

    По согласованию с заказчиком стандарт допускает выпуск продукции с отверстиями, форма которых отличается от указанных. Каналы могут иметь вытянутую или грушеобразную форму.

    Круглопустотная продукция отличается также габаритами:

    • длиной, которая составляет 2,4–12 м;
    • шириной, находящейся в интервале 1м3,6 м;
    • толщиной, составляющей 16–30 см.

    По требованию потребителя предприятие-изготовитель может выпускать нестандартную продукцию, отличающуюся размерами.

    Основные характеристики пустотных панелей перекрытий

    Плиты с полостями пользуются популярностью в строительной отрасли благодаря своим эксплуатационным характеристикам.

    Расчет на продавливание плиты межэтажного перекрытия

    Главные моменты:

    • расширенный типоразмерный ряд продукции. Габариты могут подбираться для каждого объекта индивидуально, в зависимости от расстояния между стенами;
    • уменьшенная масса облегченной продукции (от 0,8 до 8,6 т). Масса варьируется в зависимости от плотности бетона и размеров;
    • допустимая нагрузка на плиту перекрытия, равная 3–12,5 кПа. Это главный эксплуатационный параметр, определяющий несущую способность изделий;
    • марка бетонного раствора, который применялся для заливки панелей. Для изготовления подойдут бетонные составы с маркировкой от М200 до М400;
    • стандартный интервал между продольными осями полостей, составляющий 13,9-23,3 см. Расстояние определяется типоразмером и толщиной продукции;
    • марка и тип применяемой арматуры. В зависимости от типоразмера изделия, используются стальные прутки в напряженном или ненапряженном состоянии.

    Подбирая изделия, нужно учитывать их вес, который должен соответствовать прочностным характеристикам фундамента.

    Как маркируются плиты пустотные

    Государственный стандарт регламентирует требования по маркировке продукции. Маркировка содержит буквенно-цифровое обозначение.

    Маркировка пустотных плит перекрытия

    По нему определяется следующая информация:

    • типоразмер панели;
    • габариты;
    • предельная нагрузка на плиту перекрытия.

    Маркировка также может содержать информацию по типу применяемого бетона.

    На примере изделия, которое обозначается аббревиатурой ПК 38-10-8, рассмотрим расшифровку:

    • ПК – эта аббревиатура обозначает межэтажную панель с круглыми полостями, изготовленную опалубочным методом;
    • 38 – длина изделия, составляющая 3780 мм и округленная до 38 дециметров;
    • 10 – указанная в дециметрах округленная ширина, фактический размер составляет 990 мм;
    • 8 – цифра, указывающая, сколько выдерживает плита перекрытия килопаскалей. Это изделие способно выдерживать 800 кг на квадратный метр поверхности.

    При выполнении проектных работ следует обращать внимание на индекс в маркировке изделий, чтобы избежать ошибок. Подбирать изделия необходимо по размеру, уровню максимальной нагрузки и конструктивным особенностям.

    Преимущества и слабые стороны плит с полостями

    Пустотелые плиты популярны благодаря комплексу достоинств:

    • небольшому весу. При равных размерах они обладают высокой прочностью и успешно конкурируют с цельными панелями, которые имеют большой вес, соответственно увеличивая воздействие на стены и фундамент строения;
    • уменьшенной цене. По сравнению с цельными аналогами, для изготовления пустотелых изделий требуется уменьшенное количество бетонного раствора, что позволяет обеспечить снижение сметной стоимости строительных работ;
    • способности поглощать шумы и теплоизолировать помещение. Это достигается за счет конструктивных особенностей, связанных с наличием в бетонном массиве продольных каналов;
    • повышенному качеству промышленно изготовленной продукции. Особенности конструкции, размеры и вес не позволяют кустарно изготавливать панели;
    • возможности ускоренного монтажа. Установка выполняется намного быстрее, чем сооружение цельной железобетонной конструкции;
    • многообразию габаритов. Это позволяет использовать стандартизированную продукцию для строительства сложных перекрытий.

    К преимуществам изделий также относятся:

    • возможность использования внутреннего пространства для прокладки различных инженерных сетей;
    • повышенный запас прочности продукции, выпущенной на специализированных предприятиях;
    • стойкость к вибрационному воздействию, перепадам температур и повышенной влажности;
    • возможность использования в районах с повышенной до 9 баллов сейсмической активностью;
    • ровная поверхность, благодаря которой уменьшается трудоемкость отделочных мероприятий.

    Изделия не подвержены усадке, имеют минимальные отклонения размеров и устойчивы к воздействию коррозии.

    Имеются также и недостатки:

    • потребность в использовании грузоподъемного оборудования для выполнения работ по их установке. Это повышает общий объем затрат, а также требует наличия свободной площадки для установки подъемного крана;
    • необходимость выполнения прочностных расчетов. Важно правильно рассчитать значения статической и динамической нагрузки. Массивные бетонные покрытия не стоит устанавливать на стены старых зданий.

    Для установки перекрытия необходимо сформировать армопояс по верхнему уровню стен.

    Расчет нагрузки на плиту перекрытия

    Расчетным путем несложно определить, какую нагрузку выдерживают плиты перекрытия. Для этого необходимо:

    • начертить пространственную схему здания;
    • рассчитать вес, действующий на несущую основу;
    • вычислить нагрузки, разделив общее усилие на количество плит.

    Определяя массу, необходимо просуммировать вес стяжки, перегородок, утеплителя, а также находящейся в помещении мебели.

    Рассмотрим методику расчета на примере панели с обозначением ПК 60.15-8, которая весит 2,85 т:

    1. Рассчитаем несущую площадь – 6х15=9 м 2 .
    2. Вычислим нагрузку на единицу площади – 2,85:9=0,316 т.
    3. Отнимем от нормативного значения собственный вес 0,8-0,316=0,484 т.
    4. Вычислим вес мебели, стяжки, полов и перегородок на единицу площади – 0,3 т.
    5. Сопоставимый результат с расчетным значением 0,484-0,3=0,184 т.

    Многопустотная плита перекрытия ПК 60.15-8

    Полученная разница, равная 184 кг, подтверждает наличие запаса прочности.

    Плита перекрытия – нагрузка на м 2

    Методика расчета позволяет определить нагрузочную способность изделия.

    Рассмотрим алгоритм вычисления на примере панели ПК 23.15-8 весом 1,18 т:

    1. Рассчитаем площадь, умножив длину на ширину – 2,3х1,5=3,45 м 2 .
    2. Определим максимальную загрузочную способность – 3,45х0,8=2,76т.
    3. Отнимем массу изделия – 2,76-1,18=1,58 т.
    4. Рассчитаем вес покрытия и стяжки, который составит, например, 0,2 т на 1 м 2 .
    5. Вычислим нагрузку на поверхность от веса пола – 3,45х0,2=0,69 т.
    6. Определим запас прочности – 1,58-0,69=0,89 т.

    Фактическая нагрузка на квадратный метр определяется путем деления полученного значения на площадь 890 кг:3,45 м2= 257 кг. Это меньше расчетного показателя, составляющего 800 кг/м2.

    Максимальная нагрузка на плиту перекрытия в точке приложения усилий

    Предельное значение статической нагрузки, которое может прилагаться в одной точке, определяется с коэффициентом запаса, равным 1,3. Для этого необходимо нормативный показатель 0,8 т/м 2 умножить на коэффициент запаса. Полученное значение составляет – 0,8х1,3=1,04 т. При динамической нагрузке, действующей в одной точке, коэффициент запаса следует увеличить до 1,5.

    Нагрузка на плиту перекрытия в панельном доме старой постройки

    Определяя, какой вес выдерживает плита перекрытия в квартире старого дома, следует учитывать ряд факторов:

    • нагрузочную способность стен;
    • состояние строительных конструкций;
    • целостность арматуры.

    При размещении в зданиях старой застройки тяжелой мебели и ванн увеличенного объема, необходимо рассчитать, какое предельное усилие могут выдержать плиты и стены строения. Воспользуйтесь услугами специалистов. Они выполнят расчеты и определят величину предельно допустимых и постоянно действующих усилий. Профессионально выполненные расчеты позволят избежать проблемных ситуаций.

    Делаем железобетонные перекрытия

    По мнению участника форума ontwerper из Москвы, монолитные железобетонные перекрытия не так уж сложно сделать своими силами. Он приводит в качестве аргументов общеизвестные и малоизвестные соображения по их изготовлению. По его мнению, делать перекрытия своими руками выгодно по нескольким причинам:

    1. Доступность технологий и материалов;
    2. Удобство и практичность с архитектурной и инженерной точек зрения;
    3. Подобные перекрытия долговечны, пожаробезопасны и обладают шумоизолирующими качествами;
    4. Финансовая целесообразность.

    Монолитные работы

    Перед тем как заливать бетон ontwerper советует тщательно продумать весь процесс и прежде всего заказать бетон на заводе. Он лучше самодельного — там есть контроль качества и количества наполнителей, улучшающих бетон и долго не дающие ему расслаивается. Состав должен состоять из тяжелых заполнителей, иметь класс прочности В20-В30 (М250-М400), и морозостойкость от F50.

    Не ленитесь и проконтролируйте по документам отпускные параметры, класс-марку и время до момента схватывания бетона.

    Если вам нужно подать бетон на второй, третий этаж или на большое расстояние то сделать это без бетононасоса вам не удастся, а перекатывание бетона лопатами по бесконечным желобам очень тяжёлое и неудобное занятие.

    В зимнее время бетон можно заказать с противоморозными добавками, учитывая, что добавки обычно повышают время набора прочности, некоторые из них провоцируют коррозию арматуры, но это допустимо, если добавка заводская.

    ontwerper предпочитает зимой строительство не вести, и вам не рекомендует. В крайнем случае сами раствор не готовьте, воспользуйтесь заводским бетоном.

    Монтаж опалубки

    Главное назначение опалубки — выдержать массу свеженалитого бетона и не деформироваться. Для вычисления прочности нужно знать, что один 20 сантиметровый слой бетонной смеси давит на квадратный метр опалубки с силой 500 кг, к этому нужно добавить давление смеси при её падении из шланга, и вы поймете, что все элементы конструкции должны быть надёжными.

    Для её изготовления ontwerper советует использовать фанеру 18-20мм ламинированную (с покрытием) или простую (но она сильнее прилипает). Для балок, ригелей и стоек опалубки следует использовать брус толщиной не менее 100х100 мм.
    После её сборки нужно обязательно проверить горизонтальность всех конструкций. В противном случае в дальнейшем вы потеряете много времени и средств для исправления ошибок.

    Армирование

    Для этого ontwerper рекомендует призвать на помощь арматуру периодического профиля A-III, А400, А500. В плите перекрытия всегда имеется четыре ряда арматуры.

    Нижний — вдоль пролета, нижний — поперек пролета, верхний — поперек пролета, верхний — вдоль пролета.

    Пролет – расстояние между опорными стенами (для прямоугольной плиты по короткой стороне). Самый нижний ряд укладывается на пластиковые сухарики, специально предназначенные для этого, их высота составляет 25-30мм. Верхний ряд – перекрывает его поперек и вяжется проволокой во всех пересечениях.

    Затем на очереди – установка разделителя сеток – детали из арматуры с определенным шагом, её можно сделать по своему желанию. На разделители – верхняя поперек, — вязать, на нее верхняя вдоль, — вязать проволокой во всех пересечениях. Верхняя точка каркаса (верх верхнего стержня) должна быть ниже верхней грани стенки опалубки на 25-30 мм, или толщина бетона выше верхней арматуры на 25-30 мм.

    После окончания армирования каркас должен представлять жёсткую конструкцию, которая не должны сдвигаться при заливке бетона из насоса. Перед заливкой проверьте соответствие шага и диаметра арматуры проекту.

    Заливка бетона

    После всей подготовки нужно принять и распределить по всей площади бетон, провибрировать его. Лучше всего плиту заливать целиком за 1 раз, если это невозможно, поставьте рассечки – промежуточные стенки внутри контура опалубки, ограничивающие бетонирования. Их делают из стальной сетки с ячейкой 8-10 мм, устанавливая ее вертикально и прикрепляя к арматуре каркаса. Ни в коем случае не делайте рассечек в середине пролета и не делайте их из доски, ППС.

    Уход за бетоном

    После заливки плиты её нужно укрыть, чтобы предотвратить попадание осадков, и постоянно поливать внешнюю поверхность, чтобы она была влажной. Приблизительно через месяц можно снять опалубку, а в случае крайней необходимости это можно сделать не раньше, чем через неделю и снимать только щиты. Для этого нужно осторожно снять щит, а плиту обратно подпереть стойкой. Стойки поддерживают плиту до её полной готовности, около месяца.

    Прочность монолитного перекрытия: расчет

    Он сводится к сравнению между собой двух факторов:

    1. Усилий, действующих в плите;
    2. Прочностью ее армированных сечений.

    Первое должно быть меньше второго.

    Стены на монолитную плиту перекрытия: рассчитываем нагрузки

    Произведем расчеты постоянных нагрузок на монолитную плиту перекрытия.

    Собственный вес плиты монолитной перекрытия с коэффициентом надежности по нагрузке 2.5т/м3 х 1.2 =2.75т/м3.
    — Для плиты 200мм — 550кг/м3

    Собственный Вес пола толщиной 50мм-100мм – стяжка – 2,2т/м2 х 1,2= 2,64т/м3
    — для пола 50мм — 110кг/м3

    Перегородки из кирпича размером 120мм приведите к площади плиты. Вес 1-го погонного метра перегородки высотой 3м 0.12м х1.2х1.8 т/м3 х 3м = 0,78т/м, при шаге перегородок длиной 4м получается примерно 0,78/4= 0,2т/м2. Таким образом приведенный вес перегородок = 300 кг/м2.

    Полезная нагрузка для 1-й группы предельных состояний (прочность) 150кг/м3 – жилье, с учетом коэффициента надежности 1.3 примем. Временная 150х1,3= 195кг/м2.

    Полная расчетная нагрузка на плиту — 550+110+300+195=1150кг/м2. Примем для эскизных расчетов нагрузку в — 1.2т/м2.

    Определение моментных усилий в нагруженных сечениях

    Изгибающие моменты определяют на 95% армирование изгибных плит. Нагруженные сечения– это середина пролета, другими словами – центр плиты.

    Изгибающие моменты в квадратной в плане плите разумной толщины, шарнирно опертой — незащемленной по контуру ( на кирпичные стены ) по каждому из направлений Х,Y примерно могут быть определены как Mx=My=ql^2/23. Можно получить некоторые значения для частных случаев.

    • Плита в плане 6х6м — Мх=My= 1.9тм;
    • Плита в плане 5х5м — Мх=My= 1.3тм;
    • Плита в плане 4х4м — Мх=My= 0,8тм.

    Это усилия, которые действуют и вдоль и поперек плиты, поэтому нужно проверить прочность двух взаимно перпендикулярных сечений.

    Проверка прочности к продольной оси

    При проверке прочности к продольной оси сечения по изгибающему моменту (пусть момент положительный, т.е брюхом вниз) в сечении есть сжатый бетон сверху и растянутая арматура снизу. Они образуют силовую пару, воспринимающие приходящее на нее моментное усилие.

    Определение усилия в этой паре

    Высота пары может быть грубо определена, как 0.8h, где h – высота сечения плиты. Усилие в арматуре определим как Nx(y)=Mx(y)/(0.8h). Получим в представлении на 1 м ширины сечения плиты.

    • Плита в плане 6х6м -Nx(y)= 11,9т;
    • Плита в плане 5х5м — Мх=My= 8,2т;
    • Плита в плане 4х4м — Мх=My= 5т.

    Под эти усилия подберите арматуру класса A-III (А400) – периодического профиля. Расчетное сопротивление арматуры разрыву равно R=3600кг/см2. площадь сечения арматурного стержня при диаметре Ф8=0,5см2, Ф12=1,13см2, Ф16=2,01см2, Ф20=3,14см2.

    Несущая способность стержня равна Nст=Aст*R Ф8=1,8т, Ф12=4,07т, Ф16=7,24т, Ф20=11,3т. Отсюда можно получить требуемый шаг арматуры. Шаг= Nст/ Nx(y)

    • Плита в плане 6х6м для арматуры Ф12 Шаг=4,07т/ 11,9т=34см;
    • Плита в плане 5х5м — для арматуры Ф8 Шаг=1,8/ 8,2=22см;
    • Плита в плане 4х4м — Ф8 Шаг=1,8/ 5=36см.

    Это армирование по прочности по каждому из направлений X и Y, т.е квадратная сетка из стержней в растянутой зоне бетона.

    Кроме прочности необходимо уменьшить образование трещин. Для плит домов и жилых помещений пролетом до 6м толщиной 200мм, опертых по контуру (т.е. по четырем сторонам) при любом соотношении а/b можно принимать нижнее рабочее армирование из стержней А III по двум направлениям с шагом 200х200 диаметром 12мм, верхнее (конструктивное) — то же из Ф8, тоньше и меньше не следует.

    Все это является частным случаем общего подхода, демонстрирующим специфику задачи, но для её реализации необходимо смотреть глубже и обращаться к специалистам.

    Размещено участником FORUMHOUSE ontwerper.