Компенсация расширения полипропиленовых труб

ЧЕТЫРЕ ПРАВИЛА МОНТАЖА ДЛЯ КОМПЕНСАЦИИ ТЕПЛОВОГО РАСШИРЕНИЯ ПОЛИПРОПИЛЕНОВОГО НАПОРНОГО ТРУБОПРОВОДА

    Екатерина Алеева 3 лет назад Просмотров:

1 ЧЕТЫРЕ ПРАВИЛА МОНТАЖА ДЛЯ КОМПЕНСАЦИИ ТЕПЛОВОГО РАСШИРЕНИЯ ПОЛИПРОПИЛЕНОВОГО НАПОРНОГО ТРУБОПРОВОДА Полипропиленовые напорные трубопроводы, используются как в водоснабжении, так и в отоплении, при определённых ограничениях. В централизованных системах отопления, в которых температура может достигать 90 0 С, полипропилен используют редко (только определённые марки сырья). В тёплых полах и автономных системах отопления с температурой теплоносителя до 80 0 С полипропилен используют часто. В любом случае надо следовать рекомендациям производителя. Желательно использовать трубы и фитинги одного производителя, поскольку разные производители могут использовать разные марки сырья. Использование деталей разных производителей не всегда ухудшит технические характеристики трубопровода, но гарантии никто давать не будет. Некоторые свойства полипропиленовых трубопроводов без преувеличения уникальны: Сварное соединение не уменьшает, а скорее увеличивает прочность трубопровода. Монтаж достаточно прост. Номенклатура труб, фитингов и арматуры весьма обширна. Срок службы трубопровода сравним со сроком службы здания, при правильном монтаже и эксплуатации. Коммерческие характеристики труб и фитингов наиболее популярных размеров достаточно привлекательны. Но одно свойство труб высокий коэффициент теплового расширения (α = 0,15 мм / м) — следует учитывать как при проектировании, так и при монтаже. Особенно это касается горячего водоснабжения и отопления. Опыт безнапорных полипропиленовых канализационных систем, которые решают проблему изменения длины трубопровода с помощью раструбов и уплотнительных колец, здесь не применим. Вместе с тем, опыт эксплуатации напорных полипропиленовых систем, насчитывающий не одно десятилетие, говорит о том, что эта проблема вполне решаема, просто надо соблюдать четыре правила: 1. Температурные изменения длины труб должны компенсироваться либо с помощью специальных петлевых компенсаторов, либо с помощью геометрии трубопровода, обычно с помощью П образных, или Г образных компенсаторов. 2. Система крепления трубопровода не должна препятствовать температурным изменениям длин труб. 3. Трубопровод должен быть защищён при температурных перемещениях от соприкосновения с «царапающими» поверхностями. 4. Монтаж трубопровода должен проводиться при положительной температуре не ниже + 5*С.

2 Подробнее о правилах: ПРАВИЛО 1 Расчёт перемещения труб при изменении температуры проводят по следующей формуле: ΔL= α x L x Δt, где: α коэффициент теплового расширения (для полипропиленовых труб α = 0,15 мм / м) L длина трубопровода; ΔL изменение длины трубопровода при его нагреве или охлаждении; Δt разница температур окружающей среды и самой трубы Результаты расчётов для разной длины труб. Длина трубы, Разница температур Δt, ºС м ,5 0,75 1,50 2,25 3,00 3,75 4,50 5,25 6,00 7,50 1,0 1,50 3,00 4,50 6,00 7,50 9,00 10,50 12,00 15,00 1,5 2,25 4,50 6,75 9,00 11,25 13,50 15,75 18,00 22,5 2,0 3,00 6,00 9,00 12,00 15,00 18,00 21,00 24,00 30,00 3,0 4,50 9,00 13,50 18,00 22,50 27,00 31,50 36,00 45,00 6,0 9,00 18,00 27,00 36,00 45,00 54,00 63,00 72,00 90,00

3 Чтобы компенсировать температурное изменение длины трубопровода часто используют петлевые компенсаторы. Однако некоторые производители, не исключая применения петлевых компенсаторов, рекомендуют П-образные и Г-образные компенсаторы. По-видимому, это вызвано тем, что конструкция петлевого компенсатора не размещена в одной плоскости, и возникает дополнительное напряжение в трубопроводе. На рисунке 1 приведена конструкция П- образного компенсатора. Длина горизонтального плеча компенсатора = десяти диаметрам трубы. Длину вертикального плеча компенсатора можно вычистить по приближённой формуле отклонение от вертикали крайней точки плеча не должно превышать 10% при максимальных температурных изменениях длины трубопровода. Для горячего водоснабжения и отопления лучше уменьшить величину процента. Более правильно пользоваться специальной номограммой, которая приведена на рисунке 2. Номограммы разных производителей могут незначительно отличаться. Из номограммы следует, для трубы диаметром 20 мм при удлинении трубопровода = 50 мм высота плеча составит 950 мм. То есть высота плеча должна быть достаточно большой.

4 Рисунок 2 Высоту плеча можно уменьшить, если в системе горячего водоснабжения, и особенно отопления, использовать так называемые стабильные трубы. Это полипропиленовые трубы армированные или алюминием, или стекловолокном. Коэффициент теплового расширения у таких труб существенно меньше.

5 Труба, армированная алюминием, в 5 раз меньше расширяется, чем обычная полипропиленовая труба. У армированной стекловолокном трубы эта характеристика несколько ниже. Можно отметить, что для систем отопления лучше использовать трубу армированную алюминием. Это обеспечивает защиту от проникновения в систему отопления кислорода воздуха, что увеличивает срок службы системы отопления. ТАБЛИЦА ЛИНЕЙНОГО РАСШИРЕНИЯ (В ММ): 1. труба PP-R PN10 и PN20 (α = 0,15 мм/м x С) 2. армированная труба PP-R PN 25 (α = 0,03 мм/м С ¹) 3. армированная стекловолокном труба PP-R PN20 (а = 0,035 мм/м С 1 ) Примечание. В таблице (+Al) означает трубу армированную алюминием, (+С) означает трубу армированную стекловолокном. Длина трубы, м Разница температур Δt, ºС ,1 0,15 0,30 0,45 0,60 0,75 0,90 1,05 1,20 0,1 (+Al) 0,03 0,06 0,09 0,12 0,15 0,18 0,21 0, (+ С) 0,03 0,07 0,10 0,14 0,17 0,21 0,24 0,28 1,0 1,50 3,00 4,50 6,00 7,50 9,00 10,50 12,00 1,0 (+Al) 0,30 0,60 0,90 1,20 1,50 1,80 2,10 2,40 1,0 (+ С) 0,35 0,70 1,05 1,40 1,75 2,10 2,45 2,80 2,0 3,00 6,00 9,00 12,00 15,00 18,00 21,00 24,00 2,0 (+Al) 0,60 1,20 1,80 2,40 3,00 3,60 4,20 4, (+ С) 0,70 1,40 2,10 2,80 3,50 4,20 4,90 5,60 ПРАВИЛО 2 Система крепления трубопровода включает в себя жёсткие крепления (опорные точки), и нежёсткие крепления (их можно назвать скользящие крепления). Жёсткое крепление не позволяет трубе перемещаться во всех направлениях. В качестве жёсткого крепления, как правило, используют металлический хомут с резиновой уплотнительной прокладкой. Опорную точку можно создать с помощью нежёсткого крепления, используя специальные приёмы. 1. Разместив нежёсткое крепление между двумя муфтами (фитингами) 2. Разместив два нежёстких крепления по обе стороны от муфты (фитинга).

6 ПРАВИЛО 3 Трубы и фитинги должны быть защищены при температурных перемещениях от соприкосновения с «царапающими» поверхностями. Дело в том, что глубокая царапина со временем может перейти в трещину. Этот процесс может затянуться на несколько месяцев или лет, но последствия будут неприятными. Надо соблюдать следующие рекомендации: 1. Крепления не должны иметь острых выступов. 2. Расстояние между трубами и стенами должно исключать их соприкосновение при эксплуатации. 3. При переходе через стену (перекрытие) труба должна быть защищена, например, отрезком любой пластиковой трубы большего диаметра и т.п. ПРАВИЛО 4 Монтаж трубопровода должен проводиться при положительной температуре не ниже + 5 град.с. Чем чревато нарушение этого правила? 1. Пластиковые фитинги сильно уменьшаться в размерах, и при сварке произойдёт нарушение номинального диаметра трубопровода. 2. На холоде практически невозможно выдержать требуемую температуру сварки из-за быстрого остывания деталей. 3. Размеры трубопровода не будут соответствовать расчетным, что может привести к недопустимому механическому напряжению в трубопроводе. Примечание. Подробности — см. ролик на ЮТУБ (Тема #3):

Компенсаторы для полипропиленовых труб: установка сильфонного расширения на пластиковый трубопровод отопления, нужен ли

Выбор и монтаж компенсаторов для полипропиленовых труб своими руками

  1. Принцип работы компенсаторов в ПП трубопроводах прост, но эффективен
  2. Что это такое?
  3. Что такое компенсаторы
  4. Компенсаторы линейного расширения и их особенности
  5. Технические характеристики
  6. Какие бывают компенсаторы
  7. Устройство и сфера применения
  8. Компенсаторы установлены – что же дальше?
  9. Классификация
  10. Критерии выбора
  11. Как грамотно выбрать компенсатор?
  12. Некоторые тонкости расчетов перед установкой компенсаторов
  13. Преимущества и недостатки
  14. Линейное расширение полипропиленовых труб.
  15. Как выполняют расчет
  16. Важная дополнительная информация
  17. Обогрев трубопровода
  18. Маркировка трубопровода из НПВХ
  19. Стойкость непластифицированного ПВХ к ультрафиолетовым лучам
Читайте также  Кислородопроницаемость полипропиленовых труб

Принцип работы компенсаторов в ПП трубопроводах прост, но эффективен

Представьте, работа ведется с обычной ПП трубой диаметром 20 мм. Температура окружающего воздуха — 20°C, а теплоносителя — 90°C. В этом случае разница температур составит 70°C.

Коэффициент линейного расширения трубы при таких параметрах может достигать — 10,5 мм на 1 погонный метр. А если трубопроводная магистраль имеет длину 5 м, тогда ее линейное расширение может превысить 5 см. Это уже опасно, и может привести к разрыву трубы.

Чтобы избежать этого, и нужны компенсаторы. Принцип их работы прост. При расширении или сжатии трубопровода компенсатор берёт нагрузку на себя и изменяется в размере. Достигается это за счет конструкции компенсатора и материала, из которого он сделан.

Что это такое?

Когда изменяется температура жидкости в пластиковом трубопроводе, происходит процесс линейной деформации. Из-за этого могут возникать провисания, которые со временем приведут к образованию трещин. Чтобы компенсировать расширение полипропилена, возникающее при скачках температуры или давления, нужно устанавливать специальный компенсатор ПП.

Компенсатор — простая деталь, которая имеет высокий показатель гибкости. Визуально он напоминает петлю, но существуют изделия похожие на отрезок гофры. Часто в комплекте с такими деталями поставляются фитинги для их монтажа на трубопровод.

Что такое компенсаторы

Для прокладки отопления или водопроводной сети чаще всего берут полипропиленовые трубы. Они отлично зарекомендовали себя, потому, что обладают внушительным рядом положительных характеристик.

Но, при таком числе качественных показателей, они имеют существенный недостаток – при тепловом воздействии увеличиваются и провисают.

По этим причинам, при конструировании сети протяженностью выше 10 метров устанавливают гибкие компенсаторы.

Это простые состыковочные конструкции, отличающиеся гибкостью, и визуально напоминают петлю. Но, они играют очень важную роль.

Компенсаторы для прокладки полипропиленовых сетей отопления компенсируют расширение трубопровода при резких повышениях температуры и давления.

Как правило, они стоят не много, а простота строения дает возможность легко поставить устройство в трубомагистраль. Так повышают надежность сети и продлевают длительность ее использования.

Компенсаторы линейного расширения и их особенности

Компенсатор может изготавливаться:

  • Из гибкого материала в форме завернутой петли;
  • Из металлической гофры (сильфона);
  • Из поливинилхлорида – компенсатор 110 мм (патрубок).

Основное предназначение этих элементов заключается в компенсации удлинения труб в результате температурного воздействия, поскольку линейные размеры трубопроводов увеличиваются на фоне резкого скачка температуры либо давления теплоносителя.

Несмотря на простоту конструкции и невысокую стоимость, компенсатор линейного расширения обеспечивает надежное соединение и бесперебойную работу коммуникации на протяжении длительного времени.

Технические характеристики

Чтобы понять возможности компенсирующей детали, необходимо разобраться с ее техническими характеристиками. Они зависят от материала, из которого изготавливается устройство. Параметры:

  1. плотность — примерно 0,92 г/см;
  2. толщина стенок — не менее 4,5 мм;
  3. максимальный температурный режим — до 95 градусов Цельсия;
  4. цвет — белый, серый;

В строительных, сантехнических магазинах продаются изделия диаметром от 20 до 110 мм. Срок службы заявленный производителем — 50 лет.

При расчете диаметра компенсатора нужно определить максимальное сжатие, расширение трубы при нагревании. Для примера можно рассмотреть трубу диаметром 90 мм. Ее максимальное расширение — 4.2 см, сжатие — 2.1 см. Рассчитывается диаметр зависимо от максимального увеличения, которое ровняется ΔL/2 = 21 мм.

Какие бывают компенсаторы

Компенсатор для пластиковых труб производится в нескольких разновидностях:

  • В виде петли – наиболее простая модель компенсирующего элемента;
  • Г-образные – данные элементы изготовлены в виде естественных углов поворота трубопроводной системы. Главное их преимущество заключается в том, что они выполняют не только задачу компенсатора, но и направляющую функцию при прокладке трубопроводной сети. При использовании данных моделей рассчитывается только размер короткого плеча, которого хватит для уравновешивания тепловой деформации длинного плеча.
  • Z-образные – предназначены для соединения двух отводов, расположенных в одной плоскости под прямым углом.
  • П-образные компенсаторы – нивелируют линейные удлинения пластиковых коммуникаций благодаря изменению углов наклона коротких плеч. Они рассчитаны на эксплуатацию в трубопроводных системах при Т=50оС и более.
  • Сильфонные – имеют гофрированную поверхность, которая делает изделия гибкими. Они необходимы для уравновешивания линейных удлинений, поглощения гидравлических ударов и уменьшения вибраций. Для них характерны компактные габариты, поэтому при монтаже они занимают минимум пространства. В зависимости от пространственного расположения и эксплуатационных характеристик, сильфонные компенсаторы для пластиковых труб подразделяются на осевые, сдвиговые и другие.
  • Компенсатор Козлова для пластиковых труб – разработан для нивелирования температурного расширения всех вариантов труб PPR (с армированием и без армирования) в отопительных сетях и трубопроводах горячей воды. Этот компенсатор для PPR труб может использоваться в сетях диаметром 20-63 мм. Компенсатор рассчитан для использования в системах при давлении 10 бар и температурных нагрузках до 100оС. Для него характерен привлекательный дизайн, поэтому присутствие этого элемента в трубопроводной магистрали не ухудшает её эстетический вид.
  • Компенсатор 110 для внутренней канализации. Изготавливается из поливинилхлорида, устойчивого к коррозионным процессам и диффузии. Один конец выполнен в виде раструба, оснащенного кольцевым уплотнительным резиновым элементом, второй предназначен под муфтовое соединение.

Устройство и сфера применения

Компенсаторы изготавливаются из статического полипропилена. При этом применяется технология инжекционной прессовки. Представляет собой однородное изделие, которое визуально напоминает змейку или петлю.

Сферы применения компенсационных деталей:

  • водопроводы горячего, холодного водоснабжения;
  • канализационные сливы;
  • системы отопления;
  • системы «теплый пол».

После установки компенсатора, безаварийный срок службы трубопровода увеличивается.

Компенсаторы установлены – что же дальше?

Эксплуатационные достоинства, которые обеспечиваются благодаря применению этого устройства, приведены ниже.

  • Если монтаж произведен правильно, соединение будет предельно герметичным.
  • Вихревые потоки устраняются, а рабочее давление в системе выравнивается.
  • Срок эксплуатации водопровода заметно увеличивается.

Классификация

Компенсационные детали классифицируются зависимо от разных факторов факторам. Их все можно разделить на две большие группы:

  • естественные — амортизирующие изделия;
  • детали, изготавливаемые из упругих материалов.

Изделия первой группы могут отличаться друг от друга по форме, назначению:

  1. П-образные — применяются для монтажа трубопроводов холодного водоснабжения (температура жидкости до 50 градусов).
  2. Г-образные — предназначены для установки на участках поворотов труб.
  3. Кольцевые — такая форма обеспечивает высокий показатель компенсации теплового расширения полипропилена.
  4. Z-образные — используется при монтаже дополнительных контуров к основному трубопроводу.

Вторая группа высокотехнологичных деталей делится на несколько подгрупп:

  1. Сальниковые — устанавливаются на системы, в которых очень часто изменяется температура жидкости. Если на изделии есть подвижный стакан, могут работать в две стороны.
  2. Сильфонные — устанавливаются на отопительных системах, трубопроводах горячего, холодного водоснабжения. Надежно защищают магистраль от гидроударов, вибраций, теплового расширения.
  3. Линзовые — подходят для бытовых трубопроводов, работающих с холодной, горячей водой.
  4. Фланцевые — изготавливаются из сантехнической резины. Устанавливаются на магистрали, в которых часто возникают гидроудары.

Сильфонные компенсаторы разделяются еще на несколько подгрупп:

  1. Сдвиговые — детали, которые состоят из двух рабочих элементов. Изготавливаются из нержавеющей стали. Не допускают возникновение деформаций на полипропиленовых трубах в две стороны.
  2. Универсальные — применяются для компенсирования любых типов деформации. Ход рабочих элементов — угловой, поперечный, осевой.

Сильфонные устройства не только компенсируют тепловое расширения, но и гасят вихревые потоки, которые образуются в трубопроводе.

Критерии выбора

Выбирать компенсационные детали нужно зависимо от условий применения:

  1. Осевые — подходят для систем отопления, трубопроводов горячего водоснабжения. Чтобы соединить их с трубой, нужно использовать специальную муфту.
  2. Сдвиговые изделия, которые имеют две гофры. Гасят тепловое расширение по двум направлениям.
  3. Фланцевые — применяются для гашения гидроударов, возникающих в водопроводах. При монтаже не нужно использовать сварочное оборудование.
  4. Универсальные — подходят для монтажа в тех местах, где невозможно поставить другие компенсационные детали.
Читайте также  Какое давление выдерживают полипропиленовые трубы для водопровода?

Во время выбора, нужно обратить внимание на толщину стенок компенсаторов. Они должны совпадать с толщиной стенок труб, на которые будут устанавливаться.

Линейное расширение при монтаже трубопроводов из полипропиленовых труб

Пластиковые трубы имеют множество преимуществ перед металлическими, однако пластиковая трубопроводная арматура имеет свои особенности, которые нужно учитывать при проектировании и монтаже внутридомовых инженерных систем. Речь идет о температурном или линейном расширении.

Что такое линейное расширение

Линейное расширение – это увеличение длины трубопровода при воздействии температуры теплоносителя и окружающей среды в силу физических свойств полимеров, которые обусловливают изменения структуры материала под воздействием перепадов температуры.

Полипропилен имеет достаточно высокий коэффициент температурного расширения, и при нагреве рабочей среды до 70 °С может увеличиваться в длину до 1,5-1,7 см. Это необходимо учитывать при проектировании и монтаже систем горячего водоснабжения и отопления, т.к. в противном случае это приведет к деформации, срыву креплений, завоздушиванию и снижению теплоотдачи батарей.

Если выполнить монтаж инженерной системы без учета этой особенности полимера, это может привести к деформации и неисправностям в работе трубопровода, особенно при установке системы большой длины (от 10 м).

На практике линейное расширение выглядит как сдвиг участка трубопровода: трубы в местах поворотов и фланцевых соединений словно отклоняются от вертикальной оси приблизительно на 1,5-1,7 см.

Ошибки в проектировании, когда специалист забывает учесть коэффициент температурного расширения (КТР), часто приводят к отклонению трубы от заданной оси, из-за чего участок трубопровода выглядит волнообразным.

Отсутствие специальных компенсирующих элементов приводит к тому, что трубы начинают прогибаться, провисать и деформироваться, что существенно снижает срок эксплуатации.

Для расчета необходимой длины трубопровода, а также мест установки компенсаторов используется специальная формула. В ней учитывается температура окружающей и рабочей среды, тип материала (армированный/неармированный полипропилен), длина участка. Полученный коэффициент переводят в сантиметры и добавляют к расчетной длине трубопровода.

Это важно! Расчет коэффициента температурного расширения актуален только для систем горячего водоснабжения и отопления, где вода нагревается до 70 °С и выше. Полипропиленовые трубы в системе холодного водоснабжения практически не меняют физических свойств, поэтому этот параметр брать во внимание при монтаже не нужно.

Зависимость структуры материала от воздействия температуры

Следует отличать максимальную температуру, которую могут выдержать ПП-трубы, от их реальных физических свойств. Несмотря на то, что производитель указывает показатель температуры плавления полипропилена 170 °С, на самом деле полипропиленовые изделия начинают размягчаться уже при 135-140 °С.

Установка таких труб без учета температурного расширения – это не просто риск деформации. Последствия ошибок в проектировании инженерных систем могут быть значительные:

  • происходит срыв крепежных элементов;
  • на деформированном участке скапливается воздух, снижающий пропускную способность системы (т.н. завоздушивание);
  • температура радиаторов и стояков снижается, система работает менее эффективно;
  • трубы лопаются, возникают утечка теплоносителя.

Важно! Для монтажа инженерных систем используются неармированные и армированные ПП-трубы. Вторые имеют дополнительный слой, который защищает внешний слой полимера от перегрева. Благодаря этому снижается коэффициент температурного расширения трубы, но полностью он не нивелируется.

У армированных полипропиленовых труб КТР меньше, но его все равно нужно учитывать.

Усредненные показатели коэффициент температурного расширения:

  • неармированные – 0,15 мм/мК;
  • армированные металлом – 0,03 мм/мК;
  • армированные стекловолокном – 0,035 мм/мК.

На деле коэффициент температурного расширения для неармированных ПП-труб 0,15 мм выглядит как удлинение участка на 1 см на каждый метр трубопровода, если температура рабочей среды достигнет 70°С.

Внимание! Это не означает, что труба длиной 5 м удлинится на 5 см при запуске горячей воды. В системах горячего водоснабжения температура воды составляет максимум 65°С, следовательно коэффициент расширения также будет меньше.

Но, в конечном счете, при расчете длины инженерной системы нужно учитывать реальные температурные показатели. Для системы отопления длина трубы может увеличиться на 5 см и более.

Расчет коэффициента расширения для различных видов труб

Существует формула для расчета расширения полипропиленовых труб при нагреве, позволяющая определить, насколько увеличится длина трубопровода:

  • Д — искомая длина участка после нагрева;
  • к — коэффициент температурного расширения;
  • ДТ — проектная длина трубопровода в метрах;
  • t – разница температур между воздухом в помещении и теплоносителем.

Например, для установки системы отопления протяженностью 10 метров и проектной температурой теплоносителя 90 °С будут использоваться армированные алюминием полипропиленовые трубы.

Температура в комнате во время монтажа составляет 25 °С. Используя формулу, можно определить длину участка после нагрева: 0,03*(90-25)*10 = 19,5 мм.

То есть к трубопроводу из армированного полипропилена протяженностью в 10 м при проектировании необходимо еще добавить запас длины 1,95 см.

Монтаж с учетом показателя линейного расширения

При монтаже трубопровода для горячего водоснабжения и отопления (в т.ч. системы «теплый пол») обязательно нужно учитывать удлинение трубы в результате воздействия высокой температуры.

Оптимальный выбор изделий для установки трубопровода – армированные трубы со стекловолоконным или алюминиевым внутренним слоем. Армирование — слой фольги или стекловолокна — поглощает часть тепловой энергии от теплоносителя и сокращает коэффициент температурного расширения полимера. Благодаря этому потребность в компенсации физических изменений будет также снижена.

Правила монтажа труб с учетом линейного расширения:

  • между трубопроводом и стеной в помещении необходимо оставить небольшой зазор, т.к. трубы могут отклоняться от своей оси при нагреве и идти волнообразно;
  • особенно важно оставить небольшие зазоры в углах помещений, где трубы соединяются поворотными муфтами или фланцами;
  • на длинных участках трубопровода устанавливают специальные компенсаторы линейного расширения, которые одновременно фиксируют трубопровод в своей плоскости, но позволяют ей смещаться по направлению монтажа;
  • желательно снизить количество жестких стыков, чтобы обеспечить гибкость трубопроводу.

В некоторых системах горячего водоснабжения и отопления на базе армированных и неармированных изделий можно увидеть различные способы т.н. самокомпенсации температурного расширения за счет упругой деформации полипропилена.

Чаще всего используются петлеобразные компенсирующие участки – кольцевые повороты с подвижной фиксацией на стене. Петля, полученная в результате такой установки, сжимается и расширяется при нагревании/остывании теплоносителя, не влияя на положение и геометрию трубопровода на остальных участках.

Компенсаторы расширения труб

Кроме самокомпенсации, предотвратить деформацию труб в результате температурного расширения можно с помощью дополнительных приспособлений – механических компенсаторов. Они устанавливаются на Г- и П-образных участках трубопроводов и представляют собой скользящие опоры, через которые проходит труба.

Специальные компенсаторы расширения делятся на несколько типов:

  1. Осевые (сильфонные) – приспособления в виде двух фланцев, между которыми находится пружина, компенсирующая сжатие и расширение участка трубопровода. Крепятся неподвижно к опоре.
  2. Сдвиговые – используются для компенсации осевого отклонения участка трубопровода при температурном расширении.
  3. Поворотные – устанавливаются на участках поворота магистрали для уменьшения деформации.
  4. Универсальные – объединяют расширения во всех направлениях, компенсируя поворот, сдвиг и сжатие трубы.

Компенсатор Козлова

Существует также новый вид устройства, названный в честь своего разработчика – компенсатор Козлова. Это более компактное устройство, внешне напоминающее участок трубопровода из полипропилена.

Внутри компенсатора находится пружина, которая поглощает энергию расширения труб в пределах участка, сжимаясь при нагреве воды и расширяясь при остывании. Преимущество компенсатора Козлова перед другими видами приспособлений – более легкий и простой монтаж, а также сокращение расхода арматуры.

В отличие от петлеобразного участка, при монтаже компенсатора Козлова достаточно соединить участок труб фланцевым или сварным способом.

Важные особенности линейного расширения полипропиленовых труб

При строительстве современных зданий, как правило, применяют полипропиленовые трубы. Их легко устанавливать и монтировать, удобно транспортировать, они не издают много шума. Конструкции, изготовленные из полипропилена, больше металлических модифицируют в длину при смене температурных показателей, то есть удлиняются при увеличении температуры и уменьшаются при остывании. По этой причине тепловое расширение трубопровода из полипропилена непременно подсчитывают при создании проектов системы трубопровода с большой протяженностью. Принимая во внимание, что температурные трансформации в системе холодного водоснабжения не выражены, расширение полипропиленовых труб не учитывается. Придают значение параметру линейного расширения лишь в системах отопления и при горячем водоснабжении.

Читайте также  Проверка качества заземления

При монтаже системы, конструкции устанавливают таким образом, чтобы они легко перемещались в границах параметров расчетного расширения. Подобный расклад может происходить в результате компенсирующей способности труб, монтирования температурных компенсаторов и грамотной настройки креплений.

Что произойдет при пренебрежении тепловым расширением?

  1. Рост температурных показателей в полипропиленовых трубах может способствовать выдергиванию клипс и иных соединений. Подобный эффект возникает на длинных участках (свыше 10 метров) трубопровода для отопления.
  2. В самых верхних участках трубопроводной системы появляются воздушные камеры. В этом случае сечение трубы сужается, пропускная способность снижается, в связи с чем, она приобретает волнообразную форму.
  3. Прогревание батарей в системе отопления становится меньше, снижается напор горячей воды. Встречаются случаи, когда линейное расширение труб из полипропилена становится причиной поломки системы отопления.

Рекомендации по учету коэффициента линейного расширения

При создании проектов трубопроводов учитывается коэффициент теплового удлинения.

Рассчитывая изменения при нагревании, применяется нормативный коэффициент расширения и показатель разности температурных значений, намеченных в трубопроводе при включенной системе и при монтаже.

В неармированных конструкциях коэффициент теплового расширения соответствует 0,15 мм/мК, в армированных трубах подобный показатель колеблется в пределах 0,03 ─ 0,05 мм/мК. Трубопровод, армированный стекловолокном или алюминием, имеет низкий коэффициент, в отличие от полипропиленовых труб. При монтировании систем этот факт является определяющим.

Необходимо принимать в расчет длину труб, высчитывая значение, на которое удлиняется конструкция при нагревании. К примеру, при длине участка трубопровода равной 5м, величина расширения доходит до 17,5 мм.

Способы ликвидации эффекта теплового расширения труб

  • При установке системы отопления, между трубопроводом и стеной предполагаются определенного размера зазоры. Следовательно, у труб появляется возможность расширяться при нагревании на несколько сантиметров. Во избежание полной поломки систему отопления не прокладывают строго вдоль стен;
  • Наиболее тщательно необходимо следить за пайкой труб из полипропилена в участках углов помещения. Нужно сохранять зазоры определенного размера для предотвращения упора труб в стену;
  • На участках продолжительного трубопровода обязательно устанавливают особые компенсаторы. В П-образных зонах тепловое расширение способствует подвижности полипропиленовых труб. Дабы воздушные камеры не образовывались в верхних участках подобных компенсаторов, их установку производят с наклоном. В подобном случае во время наполнения системы горячим теплоносителем воздушные пробки из них уйдут;
  • При грамотном применении опор и подбора определенной формы трубопровода проблема линейного расширения устраняется.
  • Основные рекомендации монтирования: устройство гибкой системы, с минимальным количеством жестких стыков, обладающих низкой способностью к деформированию.

Трубы из полипропилена, при соблюдении рекомендации производителя и правил монтажа, отличаются от других видов своей небольшой стоимостью, простотой укладки, большим сроком эксплуатации и безопасностью.

Коэффициент линейного расширения полипропиленовых труб и способы компенсации, Портал о трубах

Правильно расположенные опоры и грамотно выполненная трубная разводка помогут решить проблему тепловой деформации. В идеале нужно создать гибкую систему с минимальным количеством жестких узлов. Коэффициент линейного расширения полипропиленовых труб учитывается при расчетах длины деформируемого участка, а величина удлинения зависит от температуры рабочей среды и от вида материала.

Линейное расширение полипропиленовых труб

Способы компенсации

При проектировании системы отопления и водоснабжения обязательно учитывают коэффициент теплового расширения полипропиленовых труб. А при монтаже создают такие условия в зоне крепления, чтобы труба могла свободно перемещаться в диапазоне величины деформации. Этого можно добиться несколькими способами:

  • через компенсирующую способность трубопровода;
  • установкой температурных компенсаторов;
  • правильным размещением опор.

Между жестко закрепленными опорами используют компенсатор. Он бывает петлеобразным, П или Г-образной формы. Иногда прокладывают трубы «змейкой». В системе холодного водоснабжения линейным расширением можно пренебречь. Неподвижные опоры направляют удлинения в сторону элементов.

При монтаже отопительной системы между трубой и стеной нужно предусмотреть зазор. При использовании неподвижных опор труба не сможет удлиниться при повышении температуры. В подвижных креплениях труба имеет возможность продольно перемещаться. Фиксирующие опоры позволяют вытягиваться в осевом направлении, а скользящие крепления позволяют скользить.

Для потолочных конструкций подойдут опоры с ремешком. Лучшее решение в данном случае – пластмассовые крепления, они не могут нарушить целостность трубы, закреплять их нужно через промежутки равные 20 диаметрам трубы.

  • Фильтры и краны фиксируют неподвижными креплениями, при этом фитинги не должны упираться в опоры.
  • Прямолинейная прокладка изменяется на угловое соединение.
  • Компенсирующая муфта имеет запас длины, который будет достаточным, чтобы сформировать технологический зазор.
  • Монтаж полипропиленовых элементов проводят после расчетов (СНиП 41-01-2003, СП 40-101-96). Неверно выбранные расстояния между опорами ведут к прогибам трубы, а это создает дополнительную нагрузку на опоры.
  • При соединении труб сваркой фольгу удаляют, что затрудняет монтаж. Лишены подобного недостатка трубы армированные стекловолокном. Они прочны и не требуют зачистки.

Компенсатор Козлова

Новая разработка, которая предотвращает деформацию и продлевает срок эксплуатации систем отопления и водопровода. Устройство состоит из внешнего полипропиленового кожуха и двухслойной гофры из нержавейки. Подсоединение осуществляется переходными муфтами. Изделие подойдет для армированных и неармированных полипропиленовых труб. Рабочее давление: 16 атмосфер, максимальная температура рабочей среды: 100°С, максимальная компенсирующая способность на сжатие: 25 мм.

Сильфонный компенсатор состоит из сильфона и вспомогательной арматуры. Он уравновешивает возможные перемещения.

Расчет деформации

Коэффициент теплового расширения армированных изделий из полипропилена (К лр) составляет 0,03-0,05 мм/мК. При увеличении температуры на 60°С удлинение составит 2-3 мм (на каждый метр). С помощью таблицы можно определить расширение полипропиленовой трубы в зависимости от ее длины и разности температур (среды и воздуха). В режиме онлайн с помощью специальных программ также можно найти длину деформации.

Рассчитать удлинение трубы можно по формуле:

где I – величина продольной деформации в мм, a – коэффициент расширения, зависящий от материала трубы,

t – разница между температурой теплоносителя и температурой окружающей среды во время монтажных работ, L – длина трубы, на которую рассчитывают величину деформации.

Пример расчета. Узнаем, на какой отрезок удлинится изделие при монтаже системы отопления длиной 7 м из армированного полипропилена (температура воздуха 24°С, рабочая температура теплоносителя 90°С):

Следовательно, при включении отопительной системы коммуникации станут длиннее на 14 мм.

Последствия неправильного монтажа:

  • при подаче теплоносителя в систему трубы нередко деформируются и «вырывают» крепежные элементы;
  • в верхней части трубопровода собирается воздух, вследствие чего его пропускная способность уменьшается, из-за слабого напора температура рабочей среды снижается;
  • иногда деформация элементов бывает такой сильной, что система отопления полностью выходит из строя.

При соединении труб сваркой фольгу удаляют, что затрудняет монтаж. Лишены подобно недостатка трубы армированные стекловолокном. Они прочны и не требуют зачистки.

Пластиковым трубам присуща гибкость, при деформации они изгибаются, не повреждаясь. Полипропиленовые изделия долговечны, не требуют покраски, не нуждаются в теплоизоляции и не ржавеют. Они просты при монтаже и не выделяют вредных веществ. Но при проектировании системы горячего водоснабжения или отопления следует обязательно учитывать способность пластика расширяться при повышении температуры и применять устройства, поглощающие перемещения.

Тематическое видео

Видео: виды компенсаторов.

Видео: тепловое расширение и сжатие труб.