Удлинение полипропиленовых труб при нагреве на метр

Линейное расширение при монтаже трубопроводов из полипропиленовых труб

Пластиковые трубы имеют множество преимуществ перед металлическими, однако пластиковая трубопроводная арматура имеет свои особенности, которые нужно учитывать при проектировании и монтаже внутридомовых инженерных систем. Речь идет о температурном или линейном расширении.

Что такое линейное расширение

Линейное расширение – это увеличение длины трубопровода при воздействии температуры теплоносителя и окружающей среды в силу физических свойств полимеров, которые обусловливают изменения структуры материала под воздействием перепадов температуры.

Полипропилен имеет достаточно высокий коэффициент температурного расширения, и при нагреве рабочей среды до 70 °С может увеличиваться в длину до 1,5-1,7 см. Это необходимо учитывать при проектировании и монтаже систем горячего водоснабжения и отопления, т.к. в противном случае это приведет к деформации, срыву креплений, завоздушиванию и снижению теплоотдачи батарей.

Если выполнить монтаж инженерной системы без учета этой особенности полимера, это может привести к деформации и неисправностям в работе трубопровода, особенно при установке системы большой длины (от 10 м).

На практике линейное расширение выглядит как сдвиг участка трубопровода: трубы в местах поворотов и фланцевых соединений словно отклоняются от вертикальной оси приблизительно на 1,5-1,7 см.

Ошибки в проектировании, когда специалист забывает учесть коэффициент температурного расширения (КТР), часто приводят к отклонению трубы от заданной оси, из-за чего участок трубопровода выглядит волнообразным.

Отсутствие специальных компенсирующих элементов приводит к тому, что трубы начинают прогибаться, провисать и деформироваться, что существенно снижает срок эксплуатации.

Для расчета необходимой длины трубопровода, а также мест установки компенсаторов используется специальная формула. В ней учитывается температура окружающей и рабочей среды, тип материала (армированный/неармированный полипропилен), длина участка. Полученный коэффициент переводят в сантиметры и добавляют к расчетной длине трубопровода.

Это важно! Расчет коэффициента температурного расширения актуален только для систем горячего водоснабжения и отопления, где вода нагревается до 70 °С и выше. Полипропиленовые трубы в системе холодного водоснабжения практически не меняют физических свойств, поэтому этот параметр брать во внимание при монтаже не нужно.

Зависимость структуры материала от воздействия температуры

Следует отличать максимальную температуру, которую могут выдержать ПП-трубы, от их реальных физических свойств. Несмотря на то, что производитель указывает показатель температуры плавления полипропилена 170 °С, на самом деле полипропиленовые изделия начинают размягчаться уже при 135-140 °С.

Установка таких труб без учета температурного расширения – это не просто риск деформации. Последствия ошибок в проектировании инженерных систем могут быть значительные:

  • происходит срыв крепежных элементов;
  • на деформированном участке скапливается воздух, снижающий пропускную способность системы (т.н. завоздушивание);
  • температура радиаторов и стояков снижается, система работает менее эффективно;
  • трубы лопаются, возникают утечка теплоносителя.

Важно! Для монтажа инженерных систем используются неармированные и армированные ПП-трубы. Вторые имеют дополнительный слой, который защищает внешний слой полимера от перегрева. Благодаря этому снижается коэффициент температурного расширения трубы, но полностью он не нивелируется.

У армированных полипропиленовых труб КТР меньше, но его все равно нужно учитывать.

Усредненные показатели коэффициент температурного расширения:

  • неармированные – 0,15 мм/мК;
  • армированные металлом – 0,03 мм/мК;
  • армированные стекловолокном – 0,035 мм/мК.

На деле коэффициент температурного расширения для неармированных ПП-труб 0,15 мм выглядит как удлинение участка на 1 см на каждый метр трубопровода, если температура рабочей среды достигнет 70°С.

Внимание! Это не означает, что труба длиной 5 м удлинится на 5 см при запуске горячей воды. В системах горячего водоснабжения температура воды составляет максимум 65°С, следовательно коэффициент расширения также будет меньше.

Но, в конечном счете, при расчете длины инженерной системы нужно учитывать реальные температурные показатели. Для системы отопления длина трубы может увеличиться на 5 см и более.

Расчет коэффициента расширения для различных видов труб

Существует формула для расчета расширения полипропиленовых труб при нагреве, позволяющая определить, насколько увеличится длина трубопровода:

  • Д — искомая длина участка после нагрева;
  • к — коэффициент температурного расширения;
  • ДТ — проектная длина трубопровода в метрах;
  • t – разница температур между воздухом в помещении и теплоносителем.

Например, для установки системы отопления протяженностью 10 метров и проектной температурой теплоносителя 90 °С будут использоваться армированные алюминием полипропиленовые трубы.

Температура в комнате во время монтажа составляет 25 °С. Используя формулу, можно определить длину участка после нагрева: 0,03*(90-25)*10 = 19,5 мм.

То есть к трубопроводу из армированного полипропилена протяженностью в 10 м при проектировании необходимо еще добавить запас длины 1,95 см.

Монтаж с учетом показателя линейного расширения

При монтаже трубопровода для горячего водоснабжения и отопления (в т.ч. системы «теплый пол») обязательно нужно учитывать удлинение трубы в результате воздействия высокой температуры.

Оптимальный выбор изделий для установки трубопровода – армированные трубы со стекловолоконным или алюминиевым внутренним слоем. Армирование — слой фольги или стекловолокна — поглощает часть тепловой энергии от теплоносителя и сокращает коэффициент температурного расширения полимера. Благодаря этому потребность в компенсации физических изменений будет также снижена.

Правила монтажа труб с учетом линейного расширения:

  • между трубопроводом и стеной в помещении необходимо оставить небольшой зазор, т.к. трубы могут отклоняться от своей оси при нагреве и идти волнообразно;
  • особенно важно оставить небольшие зазоры в углах помещений, где трубы соединяются поворотными муфтами или фланцами;
  • на длинных участках трубопровода устанавливают специальные компенсаторы линейного расширения, которые одновременно фиксируют трубопровод в своей плоскости, но позволяют ей смещаться по направлению монтажа;
  • желательно снизить количество жестких стыков, чтобы обеспечить гибкость трубопроводу.

В некоторых системах горячего водоснабжения и отопления на базе армированных и неармированных изделий можно увидеть различные способы т.н. самокомпенсации температурного расширения за счет упругой деформации полипропилена.

Чаще всего используются петлеобразные компенсирующие участки – кольцевые повороты с подвижной фиксацией на стене. Петля, полученная в результате такой установки, сжимается и расширяется при нагревании/остывании теплоносителя, не влияя на положение и геометрию трубопровода на остальных участках.

Компенсаторы расширения труб

Кроме самокомпенсации, предотвратить деформацию труб в результате температурного расширения можно с помощью дополнительных приспособлений – механических компенсаторов. Они устанавливаются на Г- и П-образных участках трубопроводов и представляют собой скользящие опоры, через которые проходит труба.

Специальные компенсаторы расширения делятся на несколько типов:

  1. Осевые (сильфонные) – приспособления в виде двух фланцев, между которыми находится пружина, компенсирующая сжатие и расширение участка трубопровода. Крепятся неподвижно к опоре.
  2. Сдвиговые – используются для компенсации осевого отклонения участка трубопровода при температурном расширении.
  3. Поворотные – устанавливаются на участках поворота магистрали для уменьшения деформации.
  4. Универсальные – объединяют расширения во всех направлениях, компенсируя поворот, сдвиг и сжатие трубы.

Компенсатор Козлова

Существует также новый вид устройства, названный в честь своего разработчика – компенсатор Козлова. Это более компактное устройство, внешне напоминающее участок трубопровода из полипропилена.

Внутри компенсатора находится пружина, которая поглощает энергию расширения труб в пределах участка, сжимаясь при нагреве воды и расширяясь при остывании. Преимущество компенсатора Козлова перед другими видами приспособлений – более легкий и простой монтаж, а также сокращение расхода арматуры.

В отличие от петлеобразного участка, при монтаже компенсатора Козлова достаточно соединить участок труб фланцевым или сварным способом.

Коэффициент расширения для полипропиленовых труб: причины расширения, компенсаторы для труб

Коэффициент линейного расширения для полипропиленовых труб.

Полипропиленовые изделия не устойчивы к высоким температурам, изделия сильно расширяются в отличие от стальных аналогов. Коэффициент линейного расширения для полипропиленовых труб выражается в изменении длины.

Данное отличительное свойство учитывают во время укладки трубопроводов, чтобы не приводить к деформации либо нарушению герметичности стыков.

Внимание! Коэффициент расширения важен в системах отопления, водопроводах с горячей водой, работающих с высоким давлением.

Общие сведения

Изменение свойств материала под влиянием температуры. Трубы из полипропиленового материала могут выдерживать кратковременный показатель температуры около ста семидесяти градусов, но изделия становятся мягкими при температуре, равной ста сорока градусам.

Свойство деформироваться следует брать во внимание, когда трубы монтируют.

Если уложить трубопровод в стене, через некоторое время расширяясь, он может разрушить ее целостность. Армированная продукция не расширяется, но может лопнуть.

Чему равен коэффициент расширения. Если во время монтажных работ пренебречь данным свойством трубы из полипропилена, то во время перепада температуры может слететь крепежная клипса, а на линейных участках может образоваться деформация синусоидального типа.

Данный участок снижает пропускной показатель жидкости, также в трубе образуется воздушная пробка. В сети для отопления это выражается понижением обогревательных функций батарей, поломкой стыков.

Линейное расширение изделий, не имеющих армирование, равно 0.1500 мм / мК. Полипропиленовые трубы, имеющие армирование с помощью стекловолокна показатель значительно ниже и составляет предел от 0.03 – х до 0.05 –ти мм / мК. Разница между значениями очень велика, это качество армированной продукции тоже надо учитывать.

Подробности

Практическим путем проверили, пятиметровый трубопрокат из полипропиленового материала удлиняется от 11 – 17 миллиметров.

Расширение изделий, имеющих армирующий слой.

Полипропилен обладает высоким уровнем деформации, если повышается температура носителя.

Чтобы добиться снижения линейного расширения, при этом повысить прочность системы, трубы снабжают армирующим покрытием из стекловолокна либо алюминия.

Виды армирования при помощи алюминия:

1.наносят слой при помощи алюминиевого листа сверху трубы.

2.алюминиевый лист наносят внутри трубы.

3.проводят армирование при помощи перфорированного алюминия.

Все методы представляют собой склеивание трубопроката из полипропилена и алюминиевой фольги. Данный способ малоэффективен, так как труба может расслаиваться, изменяя качество изделий в худшую сторону.

Читайте также  Карниз для ванной из полипропиленовой трубы

Процесс армирования при помощи стекловолокна является более функциональным и прочным. Данный метод предполагает, что внутри и снаружи трубы остается полипропилен, а между ними укладывают стекловолокно. Армирующая труба имеет три слоя. Такие трубы не подвержены тепловому изменению.

Сравнение показателя расширения до и после армирующей процедуры:

1.простые трубы имеют коэффициент в 0.1500 мм / мК, по-другому десять миллиметров на метр погонный, при изменении температуры на семьдесят градусов.

2.армированные трубопрокаты при помощи алюминия меняют значение до 0.03 мм/ мК, по-другому равно трем миллиметрам на погонный метр.

3.во время армирования стекловолокном показатель снижается до 0.035 мм / мК.

Полипропиленовые трубопрокаты с армированным слоем из стекловолокна применят в различных сферах.

Трубопрокаты имеют ряд положительных свойств:

1.имеют легкий вес.

3.противостоят образованию коррозии.

способны транспортировать химические вещества.

5.считаются чистыми с точки зрения экологии.

Особенности армирования труб из полипропилена. Армирующим материалом является цельная либо перфорированная фольга, которая имеет толщину 0.01 до 0.005 сантиметров. Материал прокладывают на стенке снаружи либо внутри изделия. Слои соединяют при помощи клея.

Фольга ложится сплошной прослойкой, которая становится защитой от кислорода. Большой объем кислорода образует коррозию на отопительных приборах.

Армирующий слой из стекловолокна образует три слоя, средний из них является стекловолокном. Его сваривают с полипропиленовыми соседними прослойками.

Так образуется максимально прочное изделие, наделенное малым показателем линейного расширения.

Внимание! Стекловолокно, как армирующий материал, имеет больше преимуществ, он монолитен и не расслаивается, в отличие от алюминиевого армирования.

Все изделия из полипропилена: армированные и неармированные, отличаются гибкостью, так как имеют большой показатель упругости.

Свойство делает сборку трубопроводов простым процессом, снижает затраты на время монтажа, потому что перед укладкой не требуется зачистка армирующего слоя из алюминия.

Что дают знания о коэффициенте расширения

Самое важное, почему необходимо знать о значении расширения, чтобы не разрушить систему, когда температура увеличивается. Этот фактор важен для отопительной сети, также водопровода с горячей водой. Его учитывают во время прокладки теплых полов.

Важно! Во время монтажа не стоит забывать, что линейное расширение увеличится до 1.5 миллиметров на метр трубопровода. Стекловолокно в качестве армирования снижает значение до шести раз.

Деформация труб приводит к повышению шума во время протока носителя, понижает уровень стабильности всей системы.

Важно! Для систем, которые подвергаются нагреву, подбирают изделия, имеющие самый низкий уровень тепловой деформации.

Особенности стекловолокна, как материала для армирования

Материал для армирования применяют сравнительно недавно. У стекляннной фибры самый низкий уровень расширения, равен 0.009 мм / мК.

Материал отличается прочностью во время нагрузок. Показатель в отличие от стали достигает значения до трех раз больше. Трубы со слоем из стекловолокна имеют достаточную прочность, эластичность, что снижает уровень теплового изменения.

Внимание! Стекловолокно добавляет полипропилену хорошие свойства, но сам материал имеет минус: хрупкость.

Учитывая данный недостаток стекловолокно стали укладывать между полипропиленом, материалы соединяют на уровне молекул.

Почему три слоя для армированной трубы считается оптимальным вариантом:

1.нельзя прокладывать стеклянными фибрами слои снаружи и внутри.

2.для слоя внутри стекловолокно считается опасным, частицы могут попасть в движущуюся воду.

Важно! Данный тип армирования обеспечивает стабильный показатель коэффициента изменения. Утверждение: на значение коэффициента трубы влияет количество фибровых частиц, не является верным.

На коэффициент влияет объем прослойки, содержащая стекловолокно. У различных марок обозначение коэффициента достигает до 10-ти процентов.

Выполняя разные расчеты для сборки систем из этих изделий, определяя количество компенсаторов, советуют учитывать среднее значение расширения, равное 0.05 мм / мК.

Что такое компенсаторы для труб из полипропилена

Деформация труб от расширения во время перепада температур приводит к их провисанию из-за удлинения. В системах длиной десять метров и более используют компенсаторы гибкого типа.

Компенсатор представляет деталь для соединения элементов в виде гибкой завернутой петли.

Элемент конструкции защищает трубы во время расширения при перепадах температуры либо давления в системе.

Внимание! Деталь имеет небольшую цену, легкий монтаж, но намного увеличивает прочность и износостойкость всей сети.

Разновидности компенсирующих устройств:

1.осевое устройство служит фиксированной опорой, их легко собирать.

сдвиговое устройство перемещается в две стороны, выполнены с помощью нержавеющей стали, между собой скрепляются посредством арматурного соединения.

3.поворотное устройство применяют в местах поворотов, закрепляя углы. Их используют, где направление изменяется под прямым углом.

4.универсальное устройство имеет три типа работы: угловой, осевой, поперечный тип движения. Используют в небольших сетях, или, когда нет возможности установить сильфонные устройства.

5.фланцевое устройство представляют собой сильфонное устройство, выполненное из резины, при помощи него нивелируют действие ударной силы во время повышения давления. Данное устройство подходит для выравнивания осевой неточности сети.

Компенсаторы монтируют при помощи сварки либо фланцев.

Применение компенсаторов имеет свои достоинства:

1.исключают вихревые потоки, стабилизируют давление в середине трубопрокатов.

2.образуют герметичность системы.

3.увеличивают срок службы.

Как вычислить коэффициент

Чтобы вычислить коэффициент, применяют инженерную формулу.

Для определения деформации в сантиметрах, необходимо знать коэффициент изменения, длину трубопроката. Рабочая температура равна комнатному значению.

Первым делом определяют разницу температуры, далее умножают на показатель длины. Коэффициент умножают на получившуюся цифру.

Во время вычислений получился коэффициент равный двадцати миллиметрам. Значит, в сантиметрах изменение будет равно двум. Во время укладки сети этот показатель необходимо учитывать.

Как компенсировать получившиеся сантиметры:

1.укладывать сеть, применяя прямые углы. С одной стороны трубы, лучше сзади, оставляют зазор, чтобы было место для деформации. Как правило, трубы отклоняются, образуя острый угол.

2.в сеть монтируют компенсаторы в форме петли.

3.укладывают трубы в виде буквы П, стыкуя скользящую опору с недвижимой. Так понижается расширение.

Внимание! Зная способы компенсации, рассчитывают пространство и выбирают подходящий метод.

Удлинение полипропиленовых труб при нагреве

При строительстве современных зданий, как правило, применяют полипропиленовые трубы. Их легко устанавливать и монтировать, удобно транспортировать, они не издают много шума. Конструкции, изготовленные из полипропилена, больше металлических модифицируют в длину при смене температурных показателей, то есть удлиняются при увеличении температуры и уменьшаются при остывании. По этой причине тепловое расширение трубопровода из полипропилена непременно подсчитывают при создании проектов системы трубопровода с большой протяженностью. Принимая во внимание, что температурные трансформации в системе холодного водоснабжения не выражены, расширение полипропиленовых труб не учитывается. Придают значение параметру линейного расширения лишь в системах отопления и при горячем водоснабжении.

p, blockquote 1,0,0,0,0 –>

p, blockquote 2,0,0,0,0 –>

При монтаже системы, конструкции устанавливают таким образом, чтобы они легко перемещались в границах параметров расчетного расширения. Подобный расклад может происходить в результате компенсирующей способности труб, монтирования температурных компенсаторов и грамотной настройки креплений.

p, blockquote 3,0,1,0,0 –>

Что произойдет при пренебрежении тепловым расширением?

p, blockquote 4,0,0,0,0 –>

  1. Рост температурных показателей в полипропиленовых трубах может способствовать выдергиванию клипс и иных соединений. Подобный эффект возникает на длинных участках (свыше 10 метров) трубопровода для отопления.
  2. В самых верхних участках трубопроводной системы появляются воздушные камеры. В этом случае сечение трубы сужается, пропускная способность снижается, в связи с чем, она приобретает волнообразную форму.
  3. Прогревание батарей в системе отопления становится меньше, снижается напор горячей воды. Встречаются случаи, когда линейное расширение труб из полипропилена становится причиной поломки системы отопления.

Рекомендации по учету коэффициента линейного расширения

p, blockquote 5,0,0,0,0 –>

При создании проектов трубопроводов учитывается коэффициент теплового удлинения.

p, blockquote 6,1,0,0,0 –>

Рассчитывая изменения при нагревании, применяется нормативный коэффициент расширения и показатель разности температурных значений, намеченных в трубопроводе при включенной системе и при монтаже.

p, blockquote 7,0,0,0,0 –>

В неармированных конструкциях коэффициент теплового расширения соответствует 0,15 мм/мК, в армированных трубах подобный показатель колеблется в пределах 0,03 ─ 0,05 мм/мК. Трубопровод, армированный стекловолокном или алюминием, имеет низкий коэффициент, в отличие от полипропиленовых труб. При монтировании систем этот факт является определяющим.

p, blockquote 8,0,0,0,0 –>

Необходимо принимать в расчет длину труб, высчитывая значение, на которое удлиняется конструкция при нагревании. К примеру, при длине участка трубопровода равной 5м, величина расширения доходит до 17,5 мм.

p, blockquote 9,0,0,1,0 –>

Способы ликвидации эффекта теплового расширения труб

p, blockquote 10,0,0,0,0 –>

  • При установке системы отопления, между трубопроводом и стеной предполагаются определенного размера зазоры. Следовательно, у труб появляется возможность расширяться при нагревании на несколько сантиметров. Во избежание полной поломки систему отопления не прокладывают строго вдоль стен;
  • Наиболее тщательно необходимо следить за пайкой труб из полипропилена в участках углов помещения. Нужно сохранять зазоры определенного размера для предотвращения упора труб в стену;
  • На участках продолжительного трубопровода обязательно устанавливают особые компенсаторы. В П-образных зонах тепловое расширение способствует подвижности полипропиленовых труб. Дабы воздушные камеры не образовывались в верхних участках подобных компенсаторов, их установку производят с наклоном. В подобном случае во время наполнения системы горячим теплоносителем воздушные пробки из них уйдут;
  • При грамотном применении опор и подбора определенной формы трубопровода проблема линейного расширения устраняется.
  • Основные рекомендации монтирования: устройство гибкой системы, с минимальным количеством жестких стыков, обладающих низкой способностью к деформированию.

Трубы из полипропилена, при соблюдении рекомендации производителя и правил монтажа, отличаются от других видов своей небольшой стоимостью, простотой укладки, большим сроком эксплуатации и безопасностью.

p, blockquote 11,0,0,0,0 –> p, blockquote 12,0,0,0,1 –>

Читайте также  Крепление полосы заземления к сэндвич панели

Полипропилен является самым востребованным материалом на рынке. Связано это не с его особенным качеством, а все же с приятной стоимостью. Но за все доступное в итоге приходиться расплачиваться. Поэтому в этой статье вы узнаете 9 недостатков отопления дома полипропиленовыми трубами.

Большое линейное расширение

Если вы собрались делать отопление полипропиленовыми трубами, то сразу закладывайте использование их только в скрытом монтаже. Все трубы вам нужно будет запрятать в стены и стяжку, и желательно в изоляции.

Основной проблемой полипропилена является его линейное расширение. Составляет оно примерно 2,5 мм на один погонный метр. Если вы смонтировали ровные трубы, то во время эксплуатации они обязательно где-нибудь «поплывут». Даже если их часто крепить. Если эти трубы будут располагаться снаружи, то вряд ли вы оцените такую картину.

Проблемы сварки труб

Соединяют трубы ППР между собой методом сварки (по другому методом спайки). С одной стороны это довольно простой и удобный способ соединения, но при этом он требует серьезного и ответственного подхода. Многие монтажники недобросовестно относятся к данной процедуре, сваривая все на авось. В итоге можно получить вот такую картину:

Такие ситуации бывают так же и у опытных монтажников. И самое печальное, невозможно узнать, нормальный получился стык или нет, пока не разрежешь напополам трубу.

У нас был случай, когда мы пригласили стороннюю бригаду на монтаж котельной из ППР труб. Ребята выкручивали сварочный утюг на максимальную температуру, хотя у каждой трубы есть свои температурные лимиты. Об этом их неоднократно предупреждали. Но они все равно сделали по своему. С виду все соединения были сделаны отлично, но в итоге после запуска котельной некоторая часть потекла. Пришлось переделывать

Большое количество стыков

Еще один минус в организации отопления полипропиленовыми трубами – это большое количество стыков. Средний дом может насчитывать порой 200-300 стыков и большая часть из них прячется в стяжку и стены. А каждый стык – это человеческий фактор, который может сыграть злую шутку. В любой момент любой стык может дать течь. Хорошо, если он будет снаружи. Но как показывает практика, довольно часто стык начинает течь внутри.

А с учетом постоянного линейного расширения трубы, стык так же может потерять свою герметичность. Верным будет заметить, что такие ситуации происходят далеко не всегда.

Срок службы материала

Кто бы что не говорил, но полипропиленовые трубы обладают непродолжительным сроком службы. Производитель озвучивает срок службы трубы в 50 лет. Практика показывает, что через 15 лет уже начинает ощущаться старение трубы. Может потрескаться, может потечь стык и тд.

Но и плюс полипропилена в том, что он быстро ремонтируется.

Полипропиленовые трубы со стекловолокном

Трубы ППР делятся на трубы для холодного и горячего водоснабжения (тут же и отопление). Раньше ППР трубы для отопления армировали специальной алюминиевой фольгой. Это вело к удорожанию готового изделия. Со временем появились трубы со стекловолокном, которые вытеснили аналогичные трубы с алюминием.

Мало кто знает, но делая отопление дома полипропиленовыми трубами со стекловолокном, вы подвергаетесь риску. Стекловолокно имеет свойство разрушаться. Порой достаточно просто кинуть трубу на пол, чтобы повредить армирующий слой.

Так же нельзя работать такой трубой при низкой температуре, так как стекловолокно становится хрупким и подвергается быстрому излому. А оно выполняет не только функцию армирования, но и кислородного барьера.

Так же, как мы знаем, трубы такие хранятся на обычных складах и никто там не следит за микроклиматом, положенным для хранения труб.

Поэтому тут все просто. Стекловолокно – это хорошо, но с ним надо быть аккуратным.

Трубы с алюминиевой фольгой

Алюминиевая фольга выступает в роли компенсатора расширения трубы, и в роли диффузионного барьера. Алюминиевая фольга располагается как ближе к поверхности трубы, так и в середине. Все зависит от конкретной марки труб.

Для того, чтобы спаять такую трубу, ее нужно предварительно очистить. Если фольга располагается в центре, то зачистив ее, труба станет совсем тонкой и при спайке соединение может быть некачественным. Поэтому, если все же соберетесь делать отопление дома полипропиленовой трубой с алюминиевой фольгой, то берите ту трубу, где фольга расположена ближе к поверхности.

Опасность заливки в стяжку

Голую полипропиленовую трубу довольно опасно заливать в стяжку в виду ее линейного расширения. Если при нагреве трубе негде будет «гулять», то есть вероятность того, что с ней чего-нибудь может произойти. Поэтому в идеале эту трубу лучше заливать в изоляции. Сейчас лучше все трубы отопления изолировать.

Фасонные изделия

Основным минусом фасонных изделий при отоплении полипропиленовыми трубами можно выделить их толщину. Они идут толще самой трубы. Это создает определенные неудобства при монтаже изоляции, а так же при использовании трубы в стяжке. Порой высота ограничена настолько, что увеличенное фасонное изделие некуда спрятать.

Полипропилен с металлом

Многие фасонные изделия из полипропилена идут с металлической вставкой с резьбой. Идеально прочное соединение металла с пластиком получить довольно не просто. Поэтому бывают случаи, когда такие соединения дают течь как раз в местах между ппр и металлом.

Что важно понимать, если вы собрались делать отопление полипропиленовыми трубами. На самом деле это хороший материал за свои деньги. Но ожидать от него чего-то особенного не стоит. Велика вероятность периодических течей и поломок, которые при этом довольно просто устраняются (если труба располагается снаружи).

Особенность данного материала в том, что далеко не всегда проблема проявляет себя сразу. Вы можете смонтировать, опрессовать систему и убедиться, что она герметична и нигде ничего не течет. А в процессе эксплуатации внезапно образуется течь. Это не совсем приятный момент.

Монтировать данной трубой отопление или нет, уже решать вам. Многие монтируют и не переживают. Мы же решили вас немного подготовить.

Расчёт линейного теплового расширения труб выполняется для определения прироста длины участка трубопровода при нагреве, необходимости устройства компенсатора температурных удлинений и определения потребной компенсирующей способности.

Прирост длины участка трубопровода при температурном расширении определяется по формуле:

a – коэффициент линейного теплового расширения, °C -1 , его величина зависит от физических свойств материала.

tmax – максимальная температура теплоносителя в трубопроводе, °C.

tс – температура окружающей среды в момент монтажа трубопровода, °C.

Важные особенности линейного расширения полипропиленовых труб

При строительстве современных зданий, как правило, применяют полипропиленовые трубы. Их легко устанавливать и монтировать, удобно транспортировать, они не издают много шума. Конструкции, изготовленные из полипропилена, больше металлических модифицируют в длину при смене температурных показателей, то есть удлиняются при увеличении температуры и уменьшаются при остывании. По этой причине тепловое расширение трубопровода из полипропилена непременно подсчитывают при создании проектов системы трубопровода с большой протяженностью. Принимая во внимание, что температурные трансформации в системе холодного водоснабжения не выражены, расширение полипропиленовых труб не учитывается. Придают значение параметру линейного расширения лишь в системах отопления и при горячем водоснабжении.

При монтаже системы, конструкции устанавливают таким образом, чтобы они легко перемещались в границах параметров расчетного расширения. Подобный расклад может происходить в результате компенсирующей способности труб, монтирования температурных компенсаторов и грамотной настройки креплений.

Что произойдет при пренебрежении тепловым расширением?

  1. Рост температурных показателей в полипропиленовых трубах может способствовать выдергиванию клипс и иных соединений. Подобный эффект возникает на длинных участках (свыше 10 метров) трубопровода для отопления.
  2. В самых верхних участках трубопроводной системы появляются воздушные камеры. В этом случае сечение трубы сужается, пропускная способность снижается, в связи с чем, она приобретает волнообразную форму.
  3. Прогревание батарей в системе отопления становится меньше, снижается напор горячей воды. Встречаются случаи, когда линейное расширение труб из полипропилена становится причиной поломки системы отопления.

Рекомендации по учету коэффициента линейного расширения

При создании проектов трубопроводов учитывается коэффициент теплового удлинения.

Рассчитывая изменения при нагревании, применяется нормативный коэффициент расширения и показатель разности температурных значений, намеченных в трубопроводе при включенной системе и при монтаже.

В неармированных конструкциях коэффициент теплового расширения соответствует 0,15 мм/мК, в армированных трубах подобный показатель колеблется в пределах 0,03 ─ 0,05 мм/мК. Трубопровод, армированный стекловолокном или алюминием, имеет низкий коэффициент, в отличие от полипропиленовых труб. При монтировании систем этот факт является определяющим.

Необходимо принимать в расчет длину труб, высчитывая значение, на которое удлиняется конструкция при нагревании. К примеру, при длине участка трубопровода равной 5м, величина расширения доходит до 17,5 мм.

Способы ликвидации эффекта теплового расширения труб

  • При установке системы отопления, между трубопроводом и стеной предполагаются определенного размера зазоры. Следовательно, у труб появляется возможность расширяться при нагревании на несколько сантиметров. Во избежание полной поломки систему отопления не прокладывают строго вдоль стен;
  • Наиболее тщательно необходимо следить за пайкой труб из полипропилена в участках углов помещения. Нужно сохранять зазоры определенного размера для предотвращения упора труб в стену;
  • На участках продолжительного трубопровода обязательно устанавливают особые компенсаторы. В П-образных зонах тепловое расширение способствует подвижности полипропиленовых труб. Дабы воздушные камеры не образовывались в верхних участках подобных компенсаторов, их установку производят с наклоном. В подобном случае во время наполнения системы горячим теплоносителем воздушные пробки из них уйдут;
  • При грамотном применении опор и подбора определенной формы трубопровода проблема линейного расширения устраняется.
  • Основные рекомендации монтирования: устройство гибкой системы, с минимальным количеством жестких стыков, обладающих низкой способностью к деформированию.
Читайте также  Для чего нужно повторное заземление на ВЛ?

Трубы из полипропилена, при соблюдении рекомендации производителя и правил монтажа, отличаются от других видов своей небольшой стоимостью, простотой укладки, большим сроком эксплуатации и безопасностью.

Линейное расширение труб

Под линейным расширением подразумевают способность изделия изменять свои размеры при повышенных температурах. Данная особенность свойственна для трубопроводов всех материалов, в том числе и из полипропилена.

  • Что такое коэффициент линейного расширения
  • Чем опасно линейное расширение
  • Факторы, влияющие на тепловое расширение
  • Особенности линейного расширения труб из поливинилхлорида
  • Особенности линейного расширения труб из ABS
  • Особенности линейного расширения труб из полиэтилена
  • Особенности линейного расширения труб PVDF
  • Особенности линейного расширения труб PB
  • Особенности линейного расширения труб из металлопласта
  • Особенности линейного расширения стали
  • Особенности линейного расширения металла
  • Особенности линейного расширения труб из полипропилена
  • Сводная таблица линейного расширения разных пластиковых труб
  • Как избежать линейного расширения
  • Разновидности компенсаторов
  • Пластиковые трубы не требующие компенсаторов
  • Вопросы, комментарии, отзывы

Что такое коэффициент линейного расширения

Коэффициент линейного расширения представляет собой физическую характеристику, которая показывает относительное увеличение линейных габаритов труб либо других изделий в условиях возрастания температуры на 1К (Кельвин) при неизменном давлении.

коэффициента линейного расширения осуществляется по формуле:

α– коэффициент линейного расширения;
Δl – удлинение трубы;
l1 – первоначальная длина трубы при Т1;
Δt – разность температур.

Независимо от того, из какого материала изготовлены трубы (металла, полипропилена или какого-то другого), в любом случае при проектировании трубопроводных коммуникаций следует учитывать линейное расширение стали, ПП и т.д.

В трубопроводах холодного водоснабжения изменения температуры практически отсутствуют, поэтому в этом случае трубы не изменяют свои размеры, следовательно, на данную величину можно не обращать внимания. Совсем иначе обстоят дела с системами подачи горячей воды и отопительными коммуникациями, в которых имеет место процесс температурного расширения.

Чем опасно линейное расширение

Стоит отметить, что у неармированных трубопроводных изделий коэффициент температурного расширения гораздо выше, нежели у армированных. Данное обстоятельство также следует учитывать при расчёте трубопроводов.

Если выпустить из виду линейное расширение полипропиленовых труб, то в результате воздействия температурных нагрузок возможно вырывание элементов крепежа и появление на прямолинейных участках синусоидальных деформаций. В таких местах начинает собираться воздух, на фоне чего ухудшится пропускная способность сети. В системах отопления происходит снижение температуры рабочей среды в радиаторе и поломка соединений.

Факторы, влияющие на тепловое расширение

Каждый материал отличается химическими характеристиками и физическими показателями, которые влияют на особенности эксплуатации и подверженность изделия воздействию внешних факторов.

Коэффициент линейного расширения труб во многом зависит от химического состава материала, из которого они изготовлены. Например, полипропиленовые изделия при многих своих преимуществах перед металлическими трубопроводами, более подвержены температурному удлинению. Но если говорить именно о трубах из ПП, то более устойчивы армированные модели.

Отдельного внимания заслуживает продукция «Акватерм», которая по сравнению с другими трубами из полипропилена гораздо устойчивее к температурным нагрузкам.

Рассмотрим особенности линейного расширения различных материалов.

Особенности линейного расширения труб из поливинилхлорида

Поливинилхлоридные (ПВХ) трубы так же, как и другие пластиковые изделия подвержены тепловым деформациям. В условиях эксплуатации ПВХ систем из поливинилхлорида происходит удлинение трубопровода. При этом линейное расширение составляет 0,06-0,08 мм/м ( о С).

Особенности линейного расширения труб из ABS

У труб ABS величина линейного удлинения составляет 0,09 мм/м ( о С), что гораздо больше, чем у полипропиленовых труб.

Особенности линейного расширения труб из полиэтилена

По сравнению с трубопроводной продукцией из полипропилена, полиэтиленовые трубы обладают достаточно высоким температурным удлинением – 0,15-0,20 мм/м ( о С). В то время, как этого недостатка лишены изделия из сшитого полиэтилена, у которого данный показатель составляет 0,024 мм/м ( о С). Благодаря этому, трубы PEX подходят для использования в системах, которые будут эксплуатироваться при повышенных температурных нагрузках. Но тем не менее для продления срока службы трубопроводной коммуникации крайне важно компенсировать тепловые деформации.

Особенности линейного расширения труб PVDF

Трубы из PVDF имеют много плюсов, но при этом у них довольно высокий коэффициент линейного расширения. Поэтому они менее подходят для создания отопительных сетей и коммуникаций горячего водоснабжения, чем полипропиленовые трубы. Тепловое удлинение трубы PVDF составляет 0,12-0,18 мм/м ( о С).

Особенности линейного расширения труб PB

Изделия из PB (полибутилена) при всех своих достоинствах реагируют на скачки температуры. У труб PB линейное расширение достигает 0,12 мм/м ( о С).

Особенности линейного расширения труб из металлопласта

Металлопласт представляет собой многослойную конструкцию. Каждый из входящих в состав материалов имеет разное тепловое расширение. В результате этого при температурных колебаниях возможно расслоение изделия и нарушение герметичности в месте соединения. В целом линейное расширение металлопласта не превышает 0,025 мм/м ( о С).

Особенности линейного расширения стали

Коэффициент линейного расширения стали зависит от марки металла, каждая из которых имеет свой состав. Включение тех или иных добавок обуславливает свойства материала. При создании отопительных коммуникаций из ПП изделий для компенсации линейного расширения реализуются разные решения. В большинстве ситуаций создаются угловые соединения. При необходимости создать строго прямолинейный участок данная проблема устраняется с помощью технологии скользящей трубы – создание подвижного соединения, которое располагается между двумя точками крепежа. При этом в случае повышения температуры обеспечивается нужное удлинение.

Особенности линейного расширения металла

Линейное расширение металла является одним из самых минимальных. Коэффициент теплового удлинения можно рассчитать самостоятельно или посмотреть в соответствующей справочной литературе. Наиболее подвержены температурным нагрузкам алюминий и медь. Если сравнивать алюминиевые и стальные трубы, то данная величина у изделий из алюминия в два раза больше, нежели у трубопроводной продукции из стали. Поэтому при использовании металлических труб для создания отопительных сетей, следует заранее выполнить необходимые расчёты (формула линейного расширения указана выше).

Особенности линейного расширения труб из полипропилена

Как показывает расчёт линейных расширений, обычные ПП трубы обладают высоким коэффициентом температурного удлинения. Так, например, если монтировать трубопровод при температуре 20 о С, а потом начать транспортировать по нему рабочую среду при температуре 90 о С, то сама коммуникация нагреется до 70 о С. В результате температурного воздействия произойдёт изменения размеров: 10,5 мм на каждый метр.

Эффективным решением данной проблемы стало изготовление армированных труб, у которых коэффициент температурного расширения в 5 раз меньше, нежели у изделий без армирования.

Из всего существующего ассортимента полипропиленовых трубопроводных систем, представленного на современном рынке, у труб «Акватерм» один из самых низких коэффициентов линейного удлинения.

Сводная таблица линейного расширения разных пластиковых труб

Наименование труб Коэффициент линейного удлинения труб мм/м ( о С)
ПВХ (поливинилхлорид) 0,06-0,08
PEX (сшитый полиэтилен) 0,024
PVDF ( поливинилиденфторид ) 0,12-0,18
ABS ( акрилонитрил-бутадиен-стирол ) 0,09
PE (полиэтилен) 0,15-0,20
PB (полибутилен) 0,12
Металлопласт 0,025
ПП (полипропилен) 0,15
Fusiolen (Фузиолен) 0,035

Как избежать линейного расширения

Такая особенность, как деформация в результате воздействия температур, со временем приводит к удлинению и провисанию системы. В случае с полипропиленовыми трубами вопрос решился благодаря гибким компенсаторам, которые устанавливаются на прямых участках коммуникации более 10 м. Данные компенсирующие детали представляют собой достаточно простые соединительные элементы, напоминающие завёрнутую петлю. В их задачу входит компенсация расширения труб в результате резких скачков температуры и давления.

  • Обеспечить стабильное давление в трубопроводах на протяжении всего периода эксплуатации системы;
  • Сохранить прямолинейность на всех участках трубопровода.

Использование гибких компенсаторов решает вопрос с линейным расширением у полипропиленовых труб. А у труб Акватерм он полностью нейтрализуется и значение приближается к 0. При этом остаются все положительные качества ПП труб, которые позволяют создавать надёжные и долговечные трубопроводы.

Как решить проблему линейного расширения труб из других материалов

Если для труб используются гибкие компенсаторы, то при монтаже коммуникаций из поливинилхлоридных комплектующих вообще не устанавливаются компенсирующие элементы. А для PVDF систем предназначены компенсаторы Козлова. Их установка положительно сказывается на качестве трубопровода и эксплуатационном периоде.

Разновидности компенсаторов

В настоящее время выпускаются разные модели компенсаторов:

Г-образные;
Z-образные;
П-образные;


Сильфонные, которые в свою очередь бывают сдвиговыми, осевыми и т.д.

О компенсаторах более подробно будет рассказано в нашем следующем обзоре.

Подводя итог, стоит сделать акцент на важность значения линейного расширения труб при проектировании трубопроводов, поскольку оно влияет на их качество и срок службы.

Пластиковые трубы не требующие компенсаторов

Пластиковые трубы от немецкой компании «Aquatherm» имеют много преимуществ, одним из которых является минимальное линейное тепловое расширение 0,035 мкм. Таким низким показателем не может похвастаться ни одна аналогичная продукция. В большинстве случаев коэффициент линейного термического расширения составляет 0,15 мкм.

Минимальная деформация гарантирует работу трубопровода без повреждений долгие годы и обеспечивает возможность не использовать компенсаторы при вертикальной прокладке в шахте и каналах.

Трубы произведенные в Германии, широкого спектра применения.

Система отлично подходит для подведения воды к бассейнам, как в частных, так и промышленных масштабах. Так же используется для транспортировки химических сред.

Произведена из материала Fusiolen