Заземление в гараже нужно ли?

Заземление в гараже: практические советы

Если вы читаете эту статью, то, очевидно, перед вами в полный рост встал вопрос: как сделать заземление в гараже? Вы проводите в гараже достаточно времени, обзавелись нужными электроинструментами, потихоньку мастерите, и тут, как человек сознательный вы задумались о своей безопасности, ведь гараж-то металлический, да и сыро в нем как-то. Или не металлический, но соседи подсказали, что общего заземления в вашем кооперативе нет, и что они сами себе прокладывали заземляющий контур. Пришло время и вам заняться этой задачей. Делаем заземление в гараже своими руками.

Зачем заземление в гараже?

Рано или поздно любой автовладелец становится хозяином собственного гаража, который подчас выполняет несколько функций. Во-первых, в гараже автомобиль можно ремонтировать. Во-вторых, в хозяйственных руках гараж превращается в универсальную мастерскую, склад, а если есть подвал, то он используется как погреб. Все это нуждается в электрификации и в соблюдении требований безопасности.

Так почему о заземлении в своем гараже нужно заботиться самому? Ведь в многоквартирных домах никто не забивает свой заземлитель во дворе. Зачем он понадобился для гаража?

Кооперативные гаражи зачастую металлические. Гидроизоляция у них, мягко говоря, неважная, как итог – внутри гаража почти «уличная» влажность. В таких условиях использование сварочного аппарата или обогревателя небезопасно: при поврежденной изоляции внутри прибора и при попадании внутрь влажного воздуха, утечка тока на корпус угрожает жизни. Конденсат пара, совместно с пылью, оседая на металлических деталях инструментов, является хорошим проводником электричества.

Отдельного внимания заслуживает освещение подвалов и погребов. Эти сырые помещения, согласно строительным и электрическим нормам, категорируются, как помещения с повышенной опасностью. А корпуса светильников в них нуждаются в обязательном заземлении.

А вот еще один аргумент в пользу гаражного заземления. Если гараж выполнен из металла, то, даже его нахождение на поверхности земли, не является гарантией того, что на корпус гаража не окажется под напряжением. Связь гаража с землей не столь надежна, чтобы выполнять заземляющую функцию, потому что между гаражом и почвой проложена гидроизоляция, а он сам установлен на бревнах или шпалах. Любое повреждение подводящей кабельной линии электропроводки во время дождя может дать эффект контакта с корпусом гаража. Прикосновение к металлическим стенкам гаража, если они оказались под напряжением, смертельно опасно. Поэтому присутствие заземляющей шины в гаражной электропроводке и в розетках является непременным требованием электробезопасности.

Заземление в гараже

Система уравнивания потенциалов

Система уравнивания потенциалов – это важный элемент защиты, который не зависит от выбранного вида заземления электропроводки. Чтобы смонтировать такую систему необходимо провести по всему внутреннему периметру гаража полосу из металла и подсоединить к ней заглубленные проводники.

Зачем это нужно:

  • если на одном из приборов повысится напряжение, то оно равномерно распределится по всем металлическим конструкциям, и вероятность удара током будет исключена;
  • чтобы защитить корпус гаража от высокого напряжения, возникающего в грозу при ударах молний.

В общих чертах система уравнивания потенциалов своей конструкцией напоминает свайный фундамент из бетона, и организовать ее реально во время строительства гаража.

Организация заземляющего контура

Чтобы защитить проводку в гараже, на вводном щитке нужно установить устройство защитного отключения: при аварии его срабатывание моментально прекратит подачу электричества в гараж.

Здесь мы подошли к самому «узкому» месту всей проблемы. А именно к тому, где и как расположен ваш гараж. Владельцы гаражей на территории своих частных усадьб на этом месте могут спокойно вздохнуть: прокладка заземлителя для их гаражей ничем не будет отличаться от устройства заземления, к примеру, дома. А может быть даже совмещенной на один общий контур. Площадь позволяет сделать наружный контур, место для траншеи или заглубления хозяин участка выбирает сам, так же, как и геометрию схемы заземления.

Сложнее всех придется хозяевам кооперативных гаражей, вплотную придвинутых друг к другу, особенно, если их пол уже забетонирован. Следующие рекомендации для них.

Совет первый: внутреннее заземление гаража

Ввиду недостатка наружных площадей для устройства заземления, его можно организовать внутри гаража, ведь гараж также возведен на грунте. Некоторые участки пола придется разобрать, а если пол уже забетонирован, то рекомендуется использовать подпол (погреб, смотровую яму). Допускается даже вбить пруты из стали в стенки погреба, ведь он расположен на 2,5 метра ниже земли, что и гарантирует нормальный контакт.

Совет второй: схема заземлителя

Контур заземления классически выполняется в форме треугольника, четырехугольника или прямой линии. Однако для гаража рекомендован проверенный и оптимальный вариант, когда схема заземления выполняется Т-образной. Следуя этой схеме, одна пара электродов заземления располагается по углам, в передней (фасадной) части гаража, а оставшуюся пару вбивают в смотровой яме. После этого все электроды объединяют между собой. Здесь крайне желательна сварка, но подойдет и болтовое соединение. Объединенный контур подключается к заземляющей шине трехжильного кабеля на щитке.

Совет третий: материалы для заземлителя

Для электродов заземления лучше всего подходят металлические уголки (у них наибольшая площадь касания). Оптимальная ширина для уголка – минимально 5 на 5 см. Длина электродов-уголков от 2 до 2,5 м. Уголки можно заменить трубками из металла с толщиной стенки не менее 3,5 мм, и диаметром от 32 мм и выше.

В качестве гибкого провода для соединения подземной системы электродов с шиной заземления на щитке идеально использовать медный кабель сечением в 6 кв. мм. Если применяется провод из алюминия, то его сечение должно быть 16 кв. мм. Подробнее можно почитать в статье «Провод заземления какого сечения выбрать».

Проверяем заземление самостоятельно

Да, такой способ существует. Заключается он в следующих действиях:

  • понадобится обычный патрон для лампы и лампочка;
  • лампочка вкручивают в патрон;
  • одним концом патрон соединяют с фазой;
  • второй конец подключают к контуру заземления;
  • если лампочка засветилась – контур заземления пригоден к использованию.

Для оценки сопротивления заземлителя нужно сравнить напряжение в сети (розетке) и напряжение на лампочке. При несущественном отличии – все в порядке, вы справились с установкой заземления, и оно будет безопасно работать, а при большой разнице в напряжении заземляющий контур нужно заглубить сильнее или добавить электродов.

Как правильно сделать заземление в гараже своими руками?

Для хранения автомобилей многие владельцы используют частные гаражные кооперативы. В силу разных причин состояние электрической проводки на таких объектах оставляет желать лучшего. В связи с этим многим автолюбителям приходится самостоятельно заниматься проблемами электрической инфраструктуры, важнейшая часть которой — заземление в гараже.

Зачем нужен контур заземления

Многие электрические приборы нуждаются в розетках с заземляющим контактом. С помощью этого контакта корпуса техники присоединяются к заземлительному контуру. Изоляционный слой, нанесенный на токоведущие элементы приборов, иногда повреждается, вовнутрь проникают вода или влажный воздух. Результат — образование конденсата на металлических поверхностях электробытовой техники. Вода — отличный проводник электричества.

Гаражи часто бывают достаточно сырыми помещениями. Данные здания квалифицируются как объекты повышенной опасности.

Существуют дополнительные факторы риска, присущие гаражам, корпус которых выполнен из металла. Металлические конструкции, не относящиеся к электроприборам, могут оказаться под напряжением, если выступят в качестве сторонней заземляющей части. Дело в том, что между металлической частью гаража и почвой находится гидроизоляционный слой, стоящий на шпалах или бревнах, поэтому контакт между корпусом и почвой не всегда надежен.

Кабеля обычно прокладывают путем их фиксации к проволоке или металлическим тросам. Последние держатся на гаражных корпусах за счет болтовых или сварных соединений. Нарушение изоляционного слоя на тросе приводит к возникновению потенциала, передаваемого на корпус гаража. Даже при отсутствии прямого контакта кабелей с металлическими поверхностями во время дождя этот контакт неизбежно возникнет.

Таким образом, наличие заземления — важнейшее требование, обеспечивающее безопасность как самой электробытовой техники, так и ее пользователей.

Механизм действия заземлительного контура

Разберем ситуацию, когда заземлительный контур отсутствует, а в распредсети гаража нет УЗО. Изоляционный слой фазы внутри сварочного аппарата нарушен, из-за чего на его корпусе возник фазный потенциал.

Так как трансформаторная нейтраль на подстанции, откуда подается электропитание, заземлена (то есть объединена с заземлительным контуром), разность потенциалов между почвой и корпусом сварочного аппарата составляет 220 Вольт. Обувь не выступает в качестве изолятора, так как пропускает ток. Стоит коснуться корпуса, и человек попадает под напряжение. Величина тока, проходящего через тело при напряжении 220 Вольт, будет не ниже 15 мА. Это означает, что мышцы сократятся до такой степени, что человек не сможет разжать руку и, если в этот момент никто не придет на помощь, наступит летальный исход.

Читайте также  Заземление из арматуры почему нельзя?

Теперь представим ситуацию, когда контур заземления есть, произошло повреждение изоляционного материала фазного провода. В таком случае происходит поэтапное включение защитного механизма. Вначале наступает стадия защитного отключения: при связанных друг с другом контурах гаража и подстанции через фазу идет ток короткого замыкания, а автомат отключает технику на некоторое время. Даже если человек прикоснулся к корпусу под напряжением, период контакта будет слишком кратким, и не будет причинен существенный вред здоровью.

При отсутствии связи между контурами и если данная связанность не позволяет образовать ток, необходимый для подключения защиты, понадобится устройство защитного подключения. УЗО будет защищать отходящие линии. При таком подходе защитное отключение будет срабатывать не на короткое замыкание, а на ток утечки в почву через гаражный заземлительный контур. Как только УЗО обнаружит утечку, тут же выключит сеть. Таким образом, человек стоящий на земле, будет в безопасности.

Сопротивление тела между участком, где есть напряжение, и нижними конечностями составляет сотни кОм. Сопротивление проводника между корпусом и заземлительным контуром гораздо меньше одного Ом, а сопротивление самого контура не выше нескольких десятков Ом. В результате есть два параллельно присоединенных сопротивления — тела и заземлителя. Основная часть электричества идет по пути наименьшего сопротивления (к заземлительному контуру). Человеку достанется небольшая величина тока, не превышающая порога отпускания.

Системы заземления

При наличии глухозаземленной нейтрали имеется три варианта систем подключения рабочих и заземляющих проводников. К рабочим относят нули (по ним течет ток нагрузки). Защитные проводники используются исключительно для транспортировки потребителю потенциала земли от заземлителей. Существует несколько вариантов того, как сделать защитное заземление. Выбор осуществляется между системами TN-C, TN-S, TN-C-S и TT.

Защита по схеме TN-C

Данный стандарт был общепринятым более десяти лет назад. Систему легко узнать по количеству проводников в питающем кабеле: их всегда два. Один — фаза, другой — совмещенный нуль (PEN). Такое название (совмещенный) обусловлено двумя функциями проводника: по нему проходит рабочий ток и выполняется соединение с заземлительным контуром питающего кабеля.

При подобном подходе нулевой проводник в качестве заземлителя применять нельзя. В противном случае при подключении к заземляющим контактам розеток есть высокая вероятность неожиданно оказаться под напряжением. К такому результату приведет обрыв проводника PEN, что очень вероятно в старых электрических сетях, так как контакты в них обычно в крайне плохом состоянии. Вследствие перераспределения токов по фазам в нулевом проводнике появится потенциал в диапазоне от 0 до 220 Вольт, и все заземляющие розеточные контакты будут под напряжением. Раз под напряжением будут контакты, то же самое произойдет и с корпусами электробытовой техники.

Когда речь идет о гараже, не понадобится даже обрыва нуля для получения потенциала на проводнике PEN. Электрическая проводка отличается небольшим сечением, а дистанция до подстанции большая. Наверняка многие замечали, что при работе со сварочным аппаратом в соседних гаражах свет не только мигает или тускнеет, но и периодически становится ярче — это следствие увеличившегося сопротивления проводки. В такой момент на нуле возникает потенциал.

Защита по схеме TN-S

Трехжильные питающие кабеля, пара нулевых шин — признаки заземлительной системы TN-S. Здесь задачи защитного и нулевого проводника разведены. Какая бы ни была нагрузка в сети гаража, когда бы ни возникли обрывы нулевых рабочих проводников на защите, опасный потенциал не возникнет.

Если гараж расположен неподалеку от подстанции и защитный проводник начинается именно там, изготавливать контур нет необходимости. Однако при значительном расстоянии до подстанции без контура не обойтись. Вывод от контура гаража подключают к шине защитного проводника в распредщите.

Защита по схеме TN-C-S

Данное устройство является переходным от TN-C к более совершенной TN-S. Совмещенный нуль расходится на защитный и рабочий. На участке разделения организуется повторный заземлительный контур. В дальнейшем к потребителям идет уже три провода (согласно системе TN-S).

Создать такой контур своими руками не составит проблем. Однако следует учесть нюанс, сопряженный все с той же потенциальной опасностью разрыва совмещенного нуля. Если при возникновении на проводнике опасного потенциала ток, идущий через контур, вызовет реакцию вводного автомата, — система должна обеспечивать безопасность. В противном случае рекомендуется дополнительно защитить групповые линии устройством защитного отключения.

Защита по схеме ТТ

Система — аналог TN-C, но есть и отличие, состоящее в отсутствии подключения заземлительного контура к PEN-проводнику. Контур оставляют независимым, соединяют его лишь с корпусами, металлическими поверхностями, заземляющими розеточными контактами. Отводы от электрощита всегда защищены устройством защитного отключения для токов свыше 30 мА.

Минус схемы заключается в неэффективности при повреждении кабеля в случае попадания тока на металлические конструкции гаража.

Создание заземления

Перед тем как своими руками сделать контур заземления, рекомендуется обратить внимание на ряд важных обстоятельств:

  1. Особое внимание следует уделять контактам. Скрутки запрещены. Действительно надежные соединения позволяют создать клеммы.
  2. Устройство защитного отключения — гарантия безопасности электрической проводки даже в случае утечек тока. При возникновении аварийных ситуаций УЗО моментально отключает питание.
  3. Лучший материал для изготовления электродов — стальные уголки. Рекомендуемый размер уголка — 50 на 50 миллиметров. Оптимальная длина уголка — от 2 до 2,5 метра. Некоторые владельцы гаражей вместо уголка используют трубы. Такой вариант допустим, но толщина стенок труб должна превышать 3,5 миллиметра. Рекомендуемый диаметр трубы — более 32 миллиметров.
  4. Конфигурация заземлительного контура важна. Многие выбирают треугольную схему, однако специалисты настаивают на большей эффективности Т-образной схемы. В этом случае одну пару электродов устанавливают по углам в передней части гаража, другую пару монтируют в смотровой яме. Все электроды объединяют между собой, а затем подключают к шине в электрощите.
  5. Для соединения подземной части системы с заземлительной шиной рекомендуется использовать гибкий провод. Лучший выбор — медный кабель с шестимиллиметровым сечением. Для алюминиевого кабеля необходимо шестнадцатимиллиметровое сечение.

Существующие конфигурации заземлительных контуров показаны на рисунке ниже.

Вертикальный заземлитель

В большинстве случаев для создания вертикального контура выбирают вертикальные заземлители с использованием (на выбор) уголков, труб или медного проводника. Ниже представлена стандартная схема организации заземления в гараже.

Для монтажа заземлительного контура заранее выкапывают яму. Ее глубина должна составлять примерно полметра.

Заземлительные устройства вертикального типа нельзя вкапывать в грунт. Допустимо только вбивание. Между электродами следует поддерживать определенную дистанцию (от полутора до двух метров). Электроды забивают в землю с помощью кувалды. Устройство должно полностью войти в грунт и даже уйти вглубь примерно на 50 сантиметров.

Установленные электроды объединяют друг с другом металлической лентой или прутком. Рекомендуемое сечение ленты — от 100 квадратных миллиметров. Диаметр прутка должен превышать 10 миллиметров.

Соединения выполняют при помощи сварочного аппарата. Все швы подлежат покраске, чтобы защитить металл от коррозийных процессов.

Финальная часть работы — прокладка трехжильного кабеля, который отходит от электрощита. Кабель подключают к розеткам и осветительной технике.

Горизонтальный заземлитель

Данная схема подразумевает укладку металлической ленты на поверхности траншеи. К ленте приваривают болт, к которому направляют кабель (из меди или алюминия). Второй конец провода подводят к шине PE (находится в распредщите). Завершают процесс закапыванием траншеи рыхлой землей. Используемый грунт не должен содержать крупных камней или строительных отходов.

На рисунке ниже показана схема функционирования горизонтального заземления.

Проверка системы

Вне зависимости от выбранной схемы организации заземления после окончания работы требуется протестировать созданную систему на работоспособность.

С этой целью рекомендуется пригласить профессионального электрика, имеющего специальное оборудование. Результат проверки, дающий показатель свыше 47 Ом, указывает на необходимость установки еще нескольких электродов.

Описанные схемы актуальны для гаражей, находящихся на отдалении от жилых построек. Если гараж расположен рядом с частным домом, оборудованным заземлительным контуром, ситуация принципиально иная. Достаточно подтянуть к гаражному строению трехжильный кабель от распредщита.

Нужно ли делать заземление в гараже

Безопасность в гараже обеспечивается определенными техническими правилами. Создание заземляющего контура гарантирует комфортное использование помещения. Сделать это можно даже самостоятельно.

Зачем заземление в гараже

Заземление в гараже жизненно необходимо, если нет желания попасть в неприятную ситуацию.

Важно, что током может ударить в тот момент, когда человек совсем этого и не ожидает.

Электроприборы, обогреватели, а также металлические стены гаража являются первыми источниками риска. При увеличении температуры в помещении вода конденсируется на электропроводке и приборах. Это несет потенциальную опасность, ведь вода является проводником электрического тока. Чтобы заземлить все инструменты, следует использовать заземляющую жилу, а потом подвести к ней электропроводку. В противном случае электрический ток может выйти на корпусы приборов, что станет причиной трагедии.

Читайте также  Винтовые сваи это капитальный фундамент или нет?

Виды заземления

Существует несколько систем заземляющих конструкций:

  • TN-S;
  • TN-C;
  • TN-C-S;
  • TT.

Что представляет собой система TN-S? Чтобы ею воспользоваться, необходимо всем владельцам рядом стоящих построек протянуть провода своего BPY к подстанции. Поэтому это не совсем то, что подойдет каждому автолюбителю.

Рассмотрим систему TN-C. Она предполагает подведение проводника и фазы к щитку в совмещенном виде. При подключении провода необходимо его разделить на PE (заземление) и N (нейтрал). Однако в случае обрыва этого провода фаза перейдет на все заземленные приборы. Естественно, что все они будут под напряжением в 220 В. При прикосновении к таким приборам можно получить сильный удар током. Такую систему использовать в индивидуальном порядке достаточно опасно.

Описывая систему TN-C-S, стоит заметить, что она наиболее безопасная. Суть ее состоит в том, что совмещенный провод прокладывается от подстанции к общему BPY, а впоследствии осуществляется еще одно заземление. От каждого владельца гаража будет тянуться провод к BPY. Новые объединения собственников гаражей пользуются именно таким способом заземления.

Самой простой и дешевой системой заземления для самостоятельного пользования является TT. Заземление осуществляется легко, путем вкапывания нескольких электродов в землю недалеко от гаражного помещения. Так достигается создание индивидуального контура.

Выбрать, как сделать заземление в гараже, придется в любом случае. Главное – придерживаться определенных инструкций.

Инструкция по подключению

  • Устройство защитного контура (УЗО) должно быть подключено к щитку. В случае аварийных ситуаций УЗО отключает электроэнергию на самом вводе.
  • Схема заземления металлического гаража выполняется в виде треугольника или по прямой линии. Система Т предполагает расположение нескольких электродов перед гаражом, а также двух, вкопанных в смотровой яме. Далее электроды соединяются между собой и подключаются в щитке.
  • В качестве электродов берут металлические уголки, длиной около двух метров. Диаметр металлических труб для работы должен составлять примерно три с половиной сантиметра, толщина стенок – около четырех миллиметров.
  • Для соединения всей конструкции понадобится гибкий провод. Обычно берется медный или алюминиевый провод.

Инструкции

Первоначально выкапывают ямки, примерно на полметра глубиной. Между ними проделываются траншеи для расположения заземляющей арматуры. Электроды следует размещать на расстоянии примерно в один метр, можно немного больше. Далее вбивают уголки в землю. Теперь с помощью тяжелого молотка нужно вбить электроды. Каждый электрод вгоняют таким образом, что над ним остается около пятидесяти сантиметров почвы.

Уголки соединяют с помощью полосы металла, толщиной не менее пяти миллиметров. Приварив элементы с помощью сварочного аппарата, их соединяют между собой. Затем подключают провода к уголкам с помощью клемм.

По завершении всех работ остается только протянуть трехжильный кабель к щитку от помещения. Именно этот кабель используется для подключения ко всем электроприборам, он заземлен.

Нужно ли заземление в гараже, решать должен, конечно же, его владелец, но лучше это сделать заранее, не дожидаясь неприятных последствий. Внимание стоит обратить на то, что с электрическим током шутить нельзя.

Если гараж располагается на территории возле места проживания, то устройство заземления в гараже иметь необязательно. Ведь система заземления находится в доме. В таком случае проводят трехжильный кабель от дома к гаражу.

Вывод

Когда заземление организовано правильно, можно не волноваться об электрической проводке. Таким образом, минимизируется опасность поражения током. Эта работа не сложная, и ее под силу выполнить даже самостоятельно.

KIA Soul EV ЭЛЕКТРОБЕГЕМОТ › Бортжурнал › Защитное заземление в гараже (Часть 1)

Приветствую Вас на странице моего БЖ!

Ранее я уже писал о приобретении зарядного устройства для своего будущего электромобиля, и о его монтаже. Для правильного и безопасного функционирования зарядного устройства требуется наличие защитного заземления. О его организации и пойдет речь в этой статье.

Готовясь стать владельцем электромобиля, мне захотелось сделать ПРАВИЛЬНОЕ заземление у себя в гараже. Не «для галочки», а по всем канонам электротехники, или правильнее сказать — по всем канонам ПУЭ (Правила Устройства Электроустановок).

Существует масса методик организации защитного заземления. Наиболее простые из них — забить в землю три штыря арматуры, треугольником, с расстоянием между штырями в несколько метров, и соединить штыри между собой. Кто-то использует металлические уголки вместо арматуры, кто-то «кругляк», или что-то еще, но…

Хотелось воспользоваться современными, высокотехнологичными решениями, обеспечивающими надежность и длительный срок эксплуатации заземления.

Если говорить о самой технологии, то я остановился на модульной методике глубинного заземления, согласно которой в землю вбивается один стержень необходимой глубины (до нескольких десятков метров). Причем этот стержень не цельный, а составлен из необходимого количества стержней длиной 1,5 метра, скрученных между собой посредством муфтового соединения. Стержни как правило используются стальные, с различным защитным покрытием: от простого оцинкованного до более дорогого и долговечного — обмедненного.

Теория и практика по данной теме очень доходчиво описана в статье журнала «Сети и бизнес»: Стержневые системы заземления.

Из всего многообразия предложений, я остановил свой выбор на Польском оборудовании торговой марки «GALMAR». Приобретя весь необходимый набор комплектующих, принялся за монтаж.

Выбор места вбивания штыря заземления не случаен: необходима возможность иметь запас высоты для установки вертикально самого штыря (1,5 метра), поверх него насадки SDS-MAX (0,25 метра), и сверху отбойный молоток (0,6 метра). Высоты потолка в подвале (1,9 метра) не хватало для выполнения данных монтажных работ. Пришлось вбивать штырь непосредственно в смотровой яме, что по итогу оказалось весьма удобным для выполнения данных работ.

Итак, что же собой представляет модульная система заземления «GALMAR». galmar.org/
Как пишут о ней на сайте производителя: Стержни из тянутой стали, гальванически покрытые чистой медью (99,9%), молекулярно и прочно сцепленной со сталью. Стальной стержень отличается высоким сопротивлением растяжению 600 Н/мм², предоставляющем возможность забивания его на большую глубину с помощью отбойного молотка. Медное покрытие толщиной не менее 0.250 мм обеспечивает сохранность забитого в грунт стержня на протяжении не менее 30 лет. Концы стержней имеют резьбу, нанесенную методом накатки и позволяющую соединять их друг с другом с помощью соединительной муфты — для создания заземлителя большой длины.

Характеристики стержня заземления Galmar:
Материал – сталь омедненная;
Толщина медного покрытия – 0,25 мм;
Длина – 1,5 м;
Диаметр – 14,2 мм;
Вес 1 стержня – 1,85 кг;
Резьба: 5/8″
Производитель — GALMAR, Польша.

Помимо самих стержней, для монтажа заземления потребуются следующие аксессуары (см.фото):
1 — конический стартовый наконечник;
2 — латунные соединительные муфты;
3 — зажим крестообразный, профильный, медь;
4 — головка для забивания стержней (болт);
5 — насадка SDS MAX для отбойного молотка.

Также, для соединения стержней при помощи латунных муфт, необходимо использовать специальные антикоррозионные токопроводящие смазки, которые способствуют снижению переходного сопротивления на стыках, и увеличивают срок службы системы заземления.

Тщательно смазываем все резьбовые соединения токопроводящей смазкой, накручиваем стартовый наконечник и муфту на первый стержень. Готовим его к забиванию в землю.

Самый интересный процесс вбивания стержней в землю остался не запечатлен на фото/видео, т.к. двух рук едва хватало на то, чтобы держать вертикально сам штырь, поверх которого, в головку болта была установлена насадка SDS-MAX для отбойного молотка, ну и сам отбойник — популярный Bosch GSH 11 E, весом 10кг.

Главное в этом деле не спешить — не давать максимальные обороты на отбойнике и не пытаться опередить события. Стержни (особенно первый) входят в землю как в масло. Если на пути стержня попадается камешек, то наконечник его разбивает, и стержень движется дальше в глубь. Но тут главное тоже не торопить события, и не врубать всю скорость, т.к это чревато перегревом наконечника, муфт, болта, насадки и самого отбойника.

Говорят, что при прикладывании чрезмерных усилий, муфты могут лопаться… тогда вся работа на смарку… штырь из глубины уже ни как не вытянуть… только забивать рядом новый. Но, я не спешил, и все прошло удачно. На вбивание одного штыря уходит от 2 до 7 минут чистого времени забивания. Это зависит от того, какой по счету штырь (первый — 2 минуты, седьмой — 7-10 минут).

Читайте также  Как ровно отрезать полипропиленовую трубу?

После вбивания каждого штыря производится контрольный замер сопротивления заземления. Для этого к штырю прикручивается токосьемный провод, подключенный к измерительному прибору.

Заземление в гараже (электрика в гараже)

. из сборника «Заземление: ответы на вопросы»
Выражаем благодарность Александру, написавшему этот интересный рассказ.

============
Начну, пожалуй, с того, что данная заметка ни в коей мере не претендует на звание «мнение эксперта» или даже «краткое руководство по электроснабжению». Здесь я просто опишу свой выбор электроснабжения и системы заземления самого обычного гаража. Скажу сразу — я учился на элек-трика и работаю электриком, но по роду деятельности имею дело с устройствами электроснабжения 10 кВ и выше, поэтому многие моменты в системе 0,4 кВ для меня были новы (и, честно скажу, инте-ресны). Знающие люди, которые действительно являются экспертами в данном диапазоне напряже-ний, возможно, найдут, что поправить в этой заметке, за что им большое спасибо.

Всё началось с того, что в моей собственности за относительно небольшую цену оказался старенький (начала 70-х годов постройки) гараж. Достался он мне в крайне «убитом» состоянии – грязный, захламлённый и с основательно текущей крышей. Как следствие, всё в боксе имело следы многолетнего воздействия воды. Воздействие это распространилось и на устройства электроснабжения гаража, а попросту проводку, о чём свидетельствовало характерное пощипывание при прикосновении к сырой штукатурке, в недрах которой она (проводка) благополучно сгнила, выполненная непонятно как и непонятно из чего.

Реконструкцию гаража решил начать с организации по возможности надёжного и безопасного электроснабжения. Старый вводной щиток, находившийся у входа в гараж, не пострадал от воздействия воды, кабель от внешней распределительной сети до щита находился тоже в хорошем состоянии, поэтому я попросту отрезал от щита всю существующую проводку, а «стройку» (перфоратор, болгарку и т.п.) питал по удлинителю-двойнику от розетки на щите.

Не буду описывать сам ремонт, так как это не имеет отношения к теме разговора (крышу я починил, и вода больше в гараж не течёт). «Перепрыгну» сразу на его окончание, когда встал вопрос об организации уже постоянного электроснабжения и в частности о способе защитного заземления.

Для начала опишу что из себя представляли внешние сети моего гаража.

Окружающие частные дома и несколько линеек гаражей в том числе и наша питались от ВЛ 0,4 кВ, выполненной на деревянных опорах, повторное заземление PEN на опорах отсутствовало. С одной из опор кабелем выполнялся «отпай» на» видавший виды» шкаф с рубильником и предохранителями (наше ВРУ), повторное заземление PEN отсутствовало. Далее на общий счетчик и с него четырехжильным кабелем с резиновой изоляцией в трубе по стене. Над воротами каждого гаража была коробка, с которой и осу-ществлялся «отпай» в гараж. Собственно в этих коробках и обнаруживалась основная проблема: внешняя изоляция кабеля была в нормальном состоянии, а вот в местах разделки изоляция отдельных жил серьезно поизносилась, потрескалась и «грозилась» вот-вот рассыпаться. Получить в таких условиях «отгар» одной из фаз или «ноля» (что более неприятно) при соприкосновении было весьма вероятно.

Электрику я решил менять полностью, начиная от наружной ответвительной коробки. В гараже устанавливался новый вводной шкаф со счётчиком, автоматами и УЗО, от которого производилась разводка розеточной сети, сетей освещения и вентиляции. Сети прокладывались по стенам наружно в пластиковых гофротрубах, всё оборудование IP 54 или IP 55, провода ВВГнгLS сечением 1,5 мм² для сетей освещения и вентиляции (суммарная мощность устанавливаемых вентиляторов не превышала 120 Вт) и 2,5 мм² для розеточной сети. Все соединения проводов производились зажимами типа WAGO.

С учётом особенностей существующей сети я начал рассматривать системы заземления, предлагаемые в п. 1.7.3 ПУЭ, последовательно от системы к системе.

Система TN-C была самым простым вариантом (схема 1).

В этом случае в щит вводились L и PEN, далее достаточно было разделить во вводном щите PEN на N и PE, к которому присоединить корпус щита, корпуса светильников и заземляющие контакты розеток. Всё достаточно просто, но в данном случае при обрыве PEN (что совсем не исключено было во внешней сети) на занулённые корпуса оборудования попала бы фаза (схема 2).

Можно было бы попытаться защититься от такого развития событий устройством повторного заземления на вводе в гараж, заземлив на организованный контур PEN. Но, скорее всего, мое повторное заземление оказалось бы единственным на весь район, и в случае «отгара» PEN, например, в районе подстанции весь рабочий ток нулевого провода, устре-мился бы ко мне. При определённом уровне несимметрии загрузки сети величина этого тока могла достигать значительных величин, что привело бы к перегреву нашего участка PEN и как следствие к возможному пожару (схема 3).

Система TN-S не рассматривалась, так как разделение PEN на PE и N на подстанции с протяжкой нескольких сотен метров провода PE к потребителям при скромном ремонте гаража в мои планы явно не входила.

Далее шла система TN-C-S (схема 4).

Для организации этой системы нужно было разделять PEN на PE и N на ВРУ гаражного кооператива с организацией повторного заземления и далее вести пятижильный кабель. Возникал вопрос относительно повторного заземления. С одной стороны нормы не ограничивают величину сопротивления повторного заземления, с другой стороны в данном конкретном случае, когда при обрыве PEN повторное заземление оказывалось по сути единственным оставшимся в работе, его сопротивление, по моему мнению, должно было быть не более 4 Ом. Но основным сдерживающим фактором был, так сказать, социальный. Некоторых владельцев гаражей кооператива я не видел вообще, и густорастущая перед воротами трава свидетельствовала, что появляться они там не собирались. Остальной части моих соседей было тоже как-то не до систем заземления, потому как появлялись они там раз в месяц. Перспектива переустраивать всю питающую сеть кооператива и «колотить» нормальный контур в одно лицо меня абсолютно не вдохновляла.

И наконец, система ТТ.

Согласно п. 1.7.59 ПУЭ «питание электроустановок напряжением до 1 кВ от источника с глухозаземлённой нейтралью и с заземлением открытых проводящих частей при помощи заземлителя, не присоединенного к нейтрали (система ТТ), допускается только в тех случаях, когда условия электробезопасности в системе TN не могут быть обеспечены». Оценив свои технологические и финансовые возможности, а попросту сказать, прикинув, что я могу сделать, и сколько мне это будет стоить, я понял, что выбор у меня стоит между системой TN-C и TT. При этом обеспечение электробезопасности в системе TN-C было под большим вопросом. В итоге выбор был сделан в пользу системы TT. При этом согласно тому же п. 1.7.59 к контуру заземления в системе ТТ предъявлялись достаточно небольшие требования. Так при применении УЗО с током срабатывания 30 мА суммарное сопротивление заземлителя и заземляющего проводника должно быть всего лишь менее 50 / 0,030 = 1667 Ом! Это было вполне выполнимой задачей даже для простого обывателя. Конечно, «увлекаться» возможностью смонтировать контур в виде одного куска арматуры, забитой на 1 м в землю, я не стал. В районе гаража залегал суглинок щебенистый. Контур выполнил из четырех труб диаметром 25 – 30 мм с толщиной стенки 2,5 – 3 мм, длина труб 2,5 м. Две трубы были забиты перед гаражными воротами, расстояние между ними 2,4 м. Две другие трубы забил в смотровой яме гаража с расстоянием между ними 2,2 м. Все четыре трубы были «обвязаны» полосой 40 х 4, все соединения, естественно, выполнялись сваркой (схема 6).

Для проверки контура пригласил специалиста из электрической лаборатории. По замерам сопротивление контура летом составило 5,8 Ом, ток короткого замыкания – 196 А. То есть установленный для розеточной сети автомат на 16 А должен был отработать за положенные ему 0,4 с. Но все же отказываться от установки УЗО я не стал в соответствии с требованиями того же п. 1.7.59. Схема вводного щита приведена на схеме 7.