Поперечное армирование плиты перекрытия в зоне продавливания

Расчеты плоской монолитной плиты перекрытия на продавливание в зоне сопряжения плиты перекрытия с колоннами

Часть 2. Расчеты перекрытия на продавливание, оценка необходимости усиления перекрытия в зоне продавливания

В процессе эксплуатации здания на участке плиты, расположенной непосредственно вокруг колонны, могут появляться трещины вследствие продавливания плиты перекрытия. Продавливание возникает из-за сдвига плиты относительно нагруженной области, расположенной непосредственно вокруг колонны. Продавливающая сила F принимается равной нагрузке, передаваемой от перекрытия на колонну (рис. 1а). На рисунке 1б приведена схема расположения поперечной арматуры в зоне стыка колонны с плоской плитой перекрытия. Сила F, продавливающая плиту перекрытия, воспринимается бетоном плиты Fb,ult и установленной в зоне стыка поперечной арматурой Fsw,ult. Если условие прочности плиты по непродавливанию не выполняется, то на верхней поверхности плиты в зоне стыка с колонной по периметру продавливания возникают трещины (рис. 1, вид А).

Для определения длины дополнительных арматурных стержней (ОС) в надколонной зоне плиты принимается во внимание, что стержни должны быть заведены за периметр надколонной зоны установки дополнительной арматуры на длину стыковочного перепуска арматуры ll. Зону установки дополнительной арматуры можно оценить на мозаике напряжений (рис. 1). Размеры надколонной зоны определены при компьютерном расчете плиты и составляют 2800´2800 мм. Длина перепуска арматуры определяется по следующей формуле:

Расчеты плоской монолитной плиты перекрытия на продавливание в зоне сопряжения плиты перекрытия с колоннами

В соответствии с конструктивными требованиями к расположению поперечной арматуры в зоне продавливания шаг поперечной арматуры (Sw) должен быть равен:

в направлении, перпендикулярном расчетному контуру (поз. 2 на рис.2 и рис. 3), — не более Sw=h0/3 и не ближе 300 мм (h0 = 166 мм, Sw = h0/3 = 166/3 = 55,3 мм, Sw = 50 мм). Допускается увеличение шага до Sw = h0/2, но при этом следует рассматривать наиболее невыгодное расположение пирамиды продавливания и при проведении расчета учитывать только пересекающие пирамиду продавливания арматурные стержни;

стержни, ближайшие к контуру площади приложения нагрузки (поз. 3 на рис. 2 и рис. 3), располагаются не ближе h0/3 (h0/3 = 166/3 = 55,3 мм) и не далее h0/2 (h0/2 = 166/2 = 83 мм);

в направлении, параллельном сторонам расчетного контура, — не более 0,25´а1 и не более 0,25´b1 (a1, b1 — длины стороны контура площади приложения нагрузки). При размерах поперечного сечения колонны 400´400 мм шаг поперечных стержней принимается Sw = 0,25´400 = 100 мм.

Сосредоточенная сила F, продавливающая плиту перекрытия, принимается равной нагрузке, передаваемой от перекрытия на колонну. (F = 18,5´6,4´6,4 = 757,76 кН). На рисунке 2 приведена схема с указанием расчетного поперечного сечения (1), контура расчетного поперечного сечения (2) и контура площади приложения нагрузки (3).

Расчет элементов без поперечной арматуры на продавливание при действии сосредоточенной силы F проводится из условия: , где:

F — сосредоточенная сила от внешней нагрузки (F = 757,76 кН);

Расчет ведем для бетона класса В25.

Fb,ult — предельное усилие, воспринимаемое бетоном (Fb,ult = gb1´Rbt´u´h0, Rbt = 1050 кН/м 2 ; Rbt = 0,9´1050 кН/м 2 — расчетное сопротивление бетона растяжению с учетом коэффициента условий работы бетона gb1 = 0,9;

u = 566´4 = 2,264 м — периметр Fb,ult = (см. рис. 2);

h0 = 0,166 м — приведенная рабочая высота сечения плиты (h0 = h01 + h02).

Условие (757,76 кН >355,15 кН) не выполняется.

Требуется установка поперечной арматуры.

Расчет элементов с поперечной арматурой на продавливание при действии сосредоточенной силы F проводится из условия: , где:

F — сосредоточенная сила от внешней нагрузки (F = 757,76 кН);

Fsw,ult — предельное усилие, воспринимаемое арматурой при продавливании.

При выполнении расчета на продавливание учитывается площадь поперечной арматуры Аsw, расположенной в пределах расстояния 0,5´h0 по обе стороны контура расчетного поперечного сечения, то есть суммарно в пределах h0 (см.рис. 3).

Рис.2. Схема к расчету на продавливание с указанием расчетного поперечного сечения (1), контура расчетного поперечного сечения (2) и контура площади приложения нагрузки (3)

На рисунке 3 показана расстановка равномерно распределенной поперечной арматуры в зоне продавливания плиты перекрытия. Отмечены стержни поперечной арматуры, площадь которых (Asw) учитывается при проведении расчета плиты перекрытия на продавливание, а также показан шаг стержней поперечной арматуры Sw.

Перед определением предельного усилия Fsw,ult, воспринимаемого арматурой при продавливании, необходимо задать диаметр и класс поперечной арматуры (Æ8А400), определить площадь сечения поперечной арматуры в пределах шага стержней Sw = 0,1 м (Аsw = 1,01´10 -4 м 2 для двух стержней диаметром 8 мм), определить по назначенному классу арматуры (А400) расчетное сопротивление поперечной арматуры растяжению Rsw = 28´10 4 кН/м 2 , определить распределенное усилие в поперечной арматуре.

Распределенное усилие в поперечной арматуре определяется по формуле:

Предельное усилие Fsw,ult, воспринимаемое арматурой при продавливании, с учетом периметра контура расчетного поперечного сечения u = 2,264 м определяется по формуле:

.

757,76 кН 355,15 кН+361,98 кН. 757,76 кН>717,13 кН — условие не выполняется.

Для выполнения условия прочности необходимо увеличить класс бетона на две ступени. Для бетона класса В35 Rb t = 1300 кН/м 2 , Fb,ult = 0,9´1300´2,264´0,166 = 436,7 кН.

436,7 кН+361,98 кН = 798,68 кН > 757,76 кН — условие выполняется.

Рис. 4. Крестообразное расположение поперечной арматуры в зоне продавливания (1-контур расчетного поперечного сечения без учета в расчете поперечной арматуры, 2- контур расчетного поперечного сечения, 3- контур площади приложения нагрузки)

При расчете элементов с поперечной арматурой на продавливание при действии сосредоточенной силы F, также необходимо обеспечить выполнение следующих требований:

усилие, которое воспринимает бетон и арматура при расчете на продавливание Fb,ult + Fsw,ult должно составлять не более 2´Fb,ult, то есть 798,68 кН 757 кН — условие выполняется.

При расчете плиты перекрытия на продавливание кроме действия сосредоточенной силы F в расчете может учитываться изгибающий момент М.

Рис. 5. Схема расположения арматурных каркасов К1 и К2, включающих в себя поперечную арматуру в зоне продавливания (1 — контур расчетного поперечного сечения без учета в расчете поперечной арматуры, 2 — контур расчетного поперечного сечения, 3 — контур площади приложения нагрузки)

Повторный расчет на продавливание при F1=1.3F

Описать мероприятия по усилению перекрытия в зоне продавливания.

Поперечное армирование плиты перекрытия в зоне продавливания

Рубрика: Технические науки

Дата публикации: 12.05.2020 2020-05-12

Статья просмотрена: 759 раз

Библиографическое описание:

Зацепилова, А. В. Поперечное армирование плиты перекрытия в зоне продавливания / А. В. Зацепилова. — Текст : непосредственный // Молодой ученый. — 2020. — № 19 (309). — С. 23-25. — URL: https://moluch.ru/archive/309/69811/ (дата обращения: 07.06.2021).

Ключевые слова: железобетонное перекрытие, колонна, узел опирания.

Железобетонные плоские перекрытия являются одним из самых распространенных видов конструкций, которые применяются в строительстве зданий и сооружений. Наиболее ответственным местом конструкции безбалочного бескапительного монолитного перекрытия является зона опирания плиты на колонну, требующая расчета данной зоны на продавливание.

Продавливание — пространственная форма скалывания, во время которого из тела плиты происходит выкалывание бетонной усеченной пирамиды, боковые стороны которой наклонены по углом 45 к горизонтали, а высота равна рабочей высоте плиты (h0).Этот механизм продавливания принят в СП 63.13330.2018, где рассматривают расчетное поперечное сечение, расположенное вокруг зоны передачи усилий на элемент на расстоянии нормально к его продольной оси (рис.1) [1]. Плиты сопротивляются продавливанию за счет прочности бетона на растяжение. Аналогичная модель продавливания рассматривается в ТКП EN 1992–1–1–2009 [2]. В отличие от СП 63.13330–2018, в ТКП EN 1992–1–1–2009 при расчете железобетонных плит на продавливание рассматриваются различные ситуации расположения колонны, учитывается влияние отверстий вблизи колонны, наличие капители.

Рис. 1. Условная модель для расчета на продавливание [1]

В настоящее время для армирования плит в зоне продавливания существуют различные варианты поперечной арматуры. Наиболее распространенными типами поперечного армирования являются закрытые хомуты (рис. 2b), открытые хомуты (рис.2c), непрерывные хомуты (рис. 2d) и наклонные хомуты (рис. 2е). Закрытые и непрерывные хомуты менее технологичны, так как ухудшают установку арматуры плиты. Результаты испытаний хомутов с наклоном 45° и 60° по отношению к плоскости плиты показали отличные конструктивные характеристики, но их использование ограничено, поскольку они не практичны. Стержни с одной (рис. 2i) и двумя головками (рис. 2j) являются промышленно развитыми типами поперечной арматуры, они просты в монтаже и имеет дает высокое сопротивление при разрушении плиты от продавливания.

Рис. 2. Условная модель для расчета на продавливание [3]

Арматура от продавливания PSB представляет собой арматурные стержни определенного диаметра и длины, которые с обоих концов имеют горячедеформированные “высаженые” головки (рис.3). Для более удобной установки PSB в каркас плиты перекрытия, арматурные стержни привариваются к металлической полосе, либо к арматурным стержням.

Рис. 3. Арматура от продавливания PSB

Также для армирования плит в зоне продавливания используется жесткая поперечная арматура. Одним из вариантов такого армирования является закладная деталь, предложенная Л. Л. Кукшей. Она представляет собой сваренные между собой стальные швеллера, к которым приварены арматурные стержни для лучшего сцепления с бетоном (рис.4). Расчет на продавливание плит с жесткой поперечной арматурой из профилированной стали производят на основе научно-технического отчета НИИЖБ [4].

Рис. 4. Закладная деталь (по Л. Л. Кукше)

Длина элементов профилированной стали принимается не менее 1,5 h0. За границей расположения элементов профилированной стали расчет на продавливание производится как для бетонного сечения, рассматривая контур расчетного поперечного сечения плиты, проходящий у конца жесткой арматуры. Установка закладных деталей из профилированной стали значительно увеличивает жесткость узла, а также периметр продавливания.

При окончательном выборе варианта армирования зоны продавливания необходимо принять такой тип армирования, который не только обеспечивает несущую способность на продавливание, но является наиболее экономически выгодными и удобным при монтаже.

  1. СП 63.13330.2018 «СНиП 52–01–2003. Бетонные и железобетонные конструкции. Основные положения». — М., 2018. — 168 с.
  2. Еврокод 2. Проектирование железобетонных конструкций: ТКП EN 1992–1–1:2009 / М-во архитектуры и строительства Респ. Беларусь. — Минск, 2010. — Ч. 1–1: Общие правила и правила для зданий. — 207 с.
  3. Maurício P. Ferreiraa, Rafael N. M. Barrosa, Manoel J. M. Pereira Filhoa, Luamim S. Tapajósa, Felipe S. Quaresma. One-Way Shear Resistance of RC Members with Unconnected Stirrups. Latin American Journal of Solids and Structures. vol.13 no.15 Rio de Janeiro Dec. 2016.
  4. ГУП «НИИЖБ». Научно-технический отчет по теме: «Разработка методики расчета и конструирования монолитных железобетонных безбалочных перекрытий, фундаментных плит и ростверков на продавливание». М.: 2002. — 51 с.

Пример 3. Расчет плиты перекрытия на продавливание в месте опирания на крайнюю колонну

Безбалочная плита перекрытия опирается на колонну, сверху также стоит колонна следующего этажа. С одной стороны колонны – край плиты. Требуется выполнить расчет плиты перекрытия на продавливание согласно п. 3.96 Пособия по проектированию бетонных и железобетонных конструкций из тяжелого бетона без предварительного напряжения арматуры к СНиП 2.03.01-84.

Толщина плиты 200 мм, расстояние от нижней грани плиты до оси рабочей арматуры 35 мм, бетон класса В25 (Rbt = 9.7 кг/см² при коэффициенте условий работы 0,9), площадь сбора нагрузки от плиты перекрытия, приходящаяся на колонну – 28,5 м² (шаг колонн 7х8 м), временная нагрузка на перекрытии 300 кг/м², постоянная нагрузка на перекрытии (без учета собственного веса плиты) 150 кг/м²; сечение колонны 300х300 мм.

На рисунке показана, на первый взгляд, непривычная (перевернутая) пирамида продавливания. В чем причина? Перекрытие опирается на колонну и давит на эту колонну своим весом и всеми нагрузками, приложенными на перекрытие. Вверху колонны появляется реакция F, направленная вверх, и именно она пытается выдавить кусок перекрытия, и если у нее это получится, перекрытие обрушится вниз, а перевернутая пирамида зависнет, выдавленная, на колонне. Но на расчетные формулы этот рисунок в принципе не влияет, поэтому переходим к расчету.

Найдем рабочую высоту сечения плиты h₀ = 200 – 35 = 165 мм.

Определим реакцию на опоре от расчетной распределенной нагрузки, зная площадь сбора нагрузки 28,5 м²:

F = 1075∙28,5 = 30637 кг = 30,64 т.

Определим периметры оснований пирамиды:

4∙0,3 = 1,2 м – периметр меньшего основания;

2∙0,465 + 2∙0,630 = 2,19 м – периметр большего основания.

Найдем среднеарифметическое значение периметров:

Определим, чему равна правая часть уравнения (200):

1,0∙9,7∙10∙1,7∙0,165 = 27,2 т.

Проверим, выполняется ли условие (200):

F = 30,64 т > 27,2 т – условие не выполняется, перекрытие не выдерживает продавливающую силу без дополнительного армирования.

Проверим, поможет ли нам установка дополнительной арматуры, для этого нам нужно обратиться к условию (201)

Проверим сразу, не превышает ли наша продавливающая сила 2Fb, здесь Fb – правая часть условия (200):

12,88 т не выполняется, но на этот случай у нас есть допущение:

Найдем, чему равна правая часть условия (201) с учетом допущения (см. картинку выше):

2,8Fsw = 2,8∙12,88 т = 36,06 т.

Проверим, превышает ли полученное значение Fb:

36,06 т > 27,2 т — условие выполняется.

Проверим условие (201):

F = 30,64 т Комментарии

Оксана, спасибо огромное за замечания, я подправлю статью!

Условие про 2Fb относится к силе F.

Ира, ты упустила, как мне кажется довольно важный момент. Fsw должно быть больше 0,5*Fb, при условии, что мы в принципе вводим поперечную арматуру, для усиления сечения.

Проверяем условие
Fsw>0.5Fb. 12,88т

по непонятным причинам, весь текст не добавляется.

поскольку условие Fsw>0.5Fb не выполняется, увеличиваем диаметр арматуры.

ссылка на документ goo.gl/R7n0dz

Askerovich, сожалею, что не увидела раньше Ваше замечание.

Не согласна, что нужно сразу увеличивать диаметр арматуры. Согласно допущению можно использовать и меньшее значение Fw, я внесла сейчас это в расчет.

Благодарю Вас за то, что отыскали ошибку и указали на нее.

Ирина, скажите пожалуйста:

1. Не правильнее ли будет вместо реакции которая возникает от грузовой площади перекрытия, подставить разницу продольных сил в верхней и нижней колонне?

2.На сколько корректно делать расчет по СНиП 2.03.01-84 или пособию к нему при проектировании в Украине, ведь есть более свежий ДСТУ Б В.2.6-156: 2010 в котором тоже есть указания по расчету на продавливание и подходы в этих документах кардинально отличаются.

Askerovich, например там по другому определяется контур продавливания, учитывается продольное армирование, ну и вобще в целом если посмотреть на эти 2 документа на первый взгляд там существенный отличия. Возможно я не совсем разобрался.
Но дело даже не в этом. Я студент. Меня интересует что я могу возразить преподавателю если он спросит почему расчет выполнен не по ДСТУ.
Да и вобще интересует в реальном проектировании действительно можно ссылаться на советские СНиПы, или Российские СП, . спрашиваю потому, что ведь они по сути не являются действующими на територии Украины. Где проходит эта грань, которую можно переступить при выборе нормативного документа?

P.S. Askerovich, когда будут новые видосики по СКАДу ? ))

«что ведь они по сути не являются действующими на територии Украины» да, это так. но ничего сташного в этом нет. конкретно по продавливанию я не вникал в новые расчеты по ДСТУ. более чем уверен ничего там нового. может ошибаюсь

если экспертиза не примет твой расчет по не ДСТУ, ДБН — то все нормально. грани нет. все годится, все расчеты хороши. использую как украинские так и советские расчеты.

ну вот пример — есть у меня программа написанная для расчета болтов. еще по СНИП. даже если что то и поменяется в расчете, то разница будет не кардинальной. поэтому я и дальше использую эту прогу.

где 100% нужно применять наши нормы — это сбор нагрузок, деформации конструкций. а то что касается таких вещей которые связаны с физичискими характеристикам и материала, то разница будет минимальна в выборе норм (продавливание, болты и много другое)

я подаю на экспертизу расчеты и по СНиП. никаких претензий. но тут еще вопрос в эксперте и его опыте. если он чувствует конструкцию и понимает что происходит

что касается опыта как студента — таки нужно разобраться в расчете по новому ДСТУ. а если сделать оба расчета (в том числе и по СНиП) — сравнить разницу

«P.S. Askerovich, когда будут новые видосики по СКАДу ?» я подготовил кое каие вещи, но не доделал. начиная с лета у меня сплошной ад на работе :). так например в прошлом месяце у меня переработка +60 часов. это значит что ты работаешь и на выходных и уходишь с работы в 20-21,00. как только будет возможность по времени, так сразу и пойдут новые ролики

Ирина, скажите пожалуйста:

1. Не правильнее ли будет вместо реакции которая возникает от грузовой площади перекрытия, подставить разницу продольных сил в верхней и нижней колонне?

2.На сколько корректно делать расчет по СНиП 2.03.01-84 или пособию к нему при проектировании в Украине, ведь есть более свежий ДСТУ Б В.2.6-156: 2010 в котором тоже есть указания по расчету на продавливание и подходы в этих документах кардинально отличаются.

Fyzest, реакция преподавателей ясна и предсказуема. вообще не удивляет. плюс нужно не забывать о закостенелости преподавателей в принципе (не всех, большинства). но чтобы сказал преподователь, когда я бы с ним побеседовал. беседа затянулась на пол часа, но в итоге было бы понятно — расчет он и в Африке расчет.

ну к примеру давай рассчитаем, выдерживает ли пруток диаметром 10 мм, груз весом в одну тонну. и теперь вопрос. по каким нормам будем считать? по украинским? еврокоду? советским? задай такой вопрос преподавателю. посмотри что он ответит.

это физика и ничего более. сила на площадь и сравнение результата с сопротивлением метала. какие нормы. разница в расчетах по разным нормам присутсвует, но результаты будут примерно сопоставимы.

задача одна. в принципе уметь разобраться в любом расчете, понимать что именно происходит в расчете, а также оперировать не только украинскими нормами, но и другими. а не зацикливаться на том, какой страны норматив. нужно понимать, что не все снипы и пособия перевели в украинские нормы (но сделано очень много). так к примеру в Казахстане все застыло на уровне 20-ти летней давности. ездил по приглашению проектировать здание в Астану, поэтому знаю как там обстоят дела.

ну и еще раз. конечно же тебе нужно разобраться в расчете по ДСТУ. я это уже говорил и повторяюсь. а лучше и по СНиП и в результате сравнить оба расчета. тогда задача будет выполнена в полном обьеме, а ты получишь хорошие знания.

все детально проработанные расчеты сохраняй. возможно они пригодятся тебе в будущем. мне они пригодились. благодаря старательности выполнения всех задач во время учебы и сохранению материалов по геодезии, уже на 4-м курсе, я прокладывал подземные сети завода ТОВ «Чіпси Люкс» в селе старые Петровцы под Киевом ( «Крафт Фудз Україна»)

«Назвал вас не серьезным конструктором» мне уже пофиг кто что про меня говорит ))). в свою очередь можно сказать о закостенелости препода и дать ему совет смотреть шире. кстати, ты из какого города?

Насчет норм. Ох, как я ждала выход ДБН ЖБК, как ждала. Когда же он вышел, это была БОЛЬ. Потому что НОЛЬ. Ничего. В документе, в котором могло бы быть ВСЁ. А я нафантазировала себе, что найду в нем то, что не учтено было в СНиПах, что станет четче, определенней, конктретнее. Я искала пункт за пунктом и не находила ничего (только на скорую руку слизанные европейские нормы). Ничего из того, что ждала (например, ждала я расчет толщины защитного слоя. наивная! намного выгоднее кому-то оказалось заставить подрядчиков перед строительством каждого объекта везти и сжигать тонны железобетона на испытаниях, чем дать расчет инженерам). ДСТУ ЖБК оказалось попыткой добавить ДБНу чуть больше практичности — подобие пособия. Остался вопрос, почему его назвали ДСТУ и то ли должно быть в стандарте? Ну и много еще вопросов. Но это так, отголоски былой трагедии — самого большого разочарования в работе украинских «нормодателей».

Как по мне, так главное — после окончания вуза найти работу в организации, в которой есть, чему поучиться. Идеально — проектный институт или контора, возникшая на основе оного. Платят меньше, зато спецом вырастешь. Идеально в квадрате — чтобы там уважали и применяли как программный, так и ручной метод расчета. Идеально в кубе — чтобы спец был и расчетчиком, и конструктором в одном лице, а не разделение труда, как сейчас принято. В общем, если ты и швец, и жнец, и на дуду дудец, это сложно, но дает большой потенциал к росту.

О современных нормах скажу главное: нужно всегда помнить, что они есть, что нужно соблюдать все нормативные требования и отслеживать своевременно появление новых норм.

О старой литературе
. Книги и учебники — примеры и расчеты в них лучше оставить для студентов, читать только для расширения кругозора (хороши узконаправленны е книги, например, посвященные сваям или просадочным грунтам, или еще чему-то конкретному). Пользоваться только справочниками и особое внимание уделять старым пособиям и руководствам к СНиП — это реальные сокровища. И считать по их примерам не стоит брезговать, сверяясь, естественно, с современными нормами. По сути сейчас сильно изменились по сравнению с советскими нормами нагрузки и принципы расчета по второму предельному состоянию. Вот это нужно держать в голове. Остальное не изменилось. Есть еще принципиальные изменения, которые стали возможны с развитием программных расчетов (нелинейные расчеты и т.д.), но это уже другая совсем тема, она (и другие базовые понятия о проектировании в целом) изложена в таких нормах ДБН А.2.2-3, ДБН В.1.2-14, ДСТУ Н.Б.В.1.2-16, ДСТУ Б А.2.4- 4.

Вообще как обычно происходит выполнение расчетов в реальности (я о ручных расчетах сейчас). Собираешь всю литературу по теме (и старую, и не старую, и даже иностранную — любую). Изучаешь, составляешь представление о вопросе. Смотришь, насколько и в чем новые украинские нормы могут тебе помочь (обычно не особо). Находишь примеры в старой литературе или собираешь свой расчет по частям — там кусочек, здесь кусочек (и тут главное — определить, что же должно быть в этом самом расчете и ничего не упустить).. Выполняешь расчет, сверяя каждый шаг с действующими нормативными требованиями (обычно если нет требований вообще, просто делаешь по старым и не мучаешься). Ссылки на старые нормы в расчете не пишешь, чтобы не дразнить. ну никого не дразнить.

Здравствуйте! Спасибо за материал. Возник небольшой вопрос касаемо поперечной арматуры.

Рабочая высота плиты составляет 0,165м. Согласно конструктивным требованиям, шаг

поперечной арматуры должен составлять не более трети от рабочей высоты, те не более 0,055м.

Подскажите, может я не верно понимаю данное условие?

Грамотное армирование монолитной ж/б плиты

Армирование монолитной плиты — это сложная и ответственная задача. Конструктивный элемент воспринимает серьезные изгибающие нагрузки, с которыми бетону не справится. По этой причине при заливке монтируют арматурные каркасы, которые усиливают плиту и не дают ей разрушаться под нагрузкой.

Как правильно армировать конструкцию? При выполнении задачи нужно соблюдать несколько правил. При строительстве частного дома обычно не разрабатывают подробный рабочий проект и не делают сложных расчетов. Из-за небольших нагрузок считаю, что достаточно соблюсти минимальные требования, которые представлены в нормативных документах. Также опытные строители могут заложить арматуру по примеру уже сделанных объектов.

Плита в здании может быть двух типов:

  • фундаментная;
  • перекрытия.

В общем случае армирование плиты перекрытия и фундаментной не имеет критических отличий. Но важно знать, что в первом случае потребуются стержни большего диаметра. Это вызвано тем, что под элементом фундамента есть упругое основание — земля, которое берет на себя часть нагрузок. А вот схема армирования плиты перекрытия не предполагает дополнительного усиления.

Армирование фундаментной плиты

Арматура в фундамент в этом случае укладывается неравномерно. Необходимо усилить конструкцию в местах наибольшего продавливания. Если толщина элемента не превышает 150 мм, то армирование для монолитной плиты фундамента выполняется одной сеткой. Такое бывает при строительстве небольших сооружений. Также тонкие плиты используются под крыльца.

Для жилого дома толщина фундамента обычно составляет 200—300 мм. Точное значение зависит от характеристик грунта и массы здания. В этом случае арматурные сетки укладываются в два слоя друг над другом. При монтаже каркасов необходимо соблюдать защитный слой бетона. Он позволяет предотвратить коррозию металла. При возведении фундаментов величина защитного слоя принимается равной 40 мм.

Диаметр армирования

Перед тем как вязать арматуру для фундамента, потребуется подобрать ее сечение. Рабочий стержни в плите располагаются перпендикулярно в обоих направлениях. Для соединения верхнего и нижнего ряда используют вертикальные хомуты. Общее сечение всех прутов в одном направлении должно составлять не менее 0,3% от площади сечения плиты в этом же направлении.

Если сторона фундамента не превышает 3 м, то минимально допустимый диаметр рабочих прутов назначается равным 10 мм. Во всех остальных случаях он составляет 12 мм. Максимально допустимое сечение — 40 мм. На практике чаще всего используют стержни от 12 до 16 мм.

Перед закупкой материалов рекомендуется посчитать массу необходимой арматуры для каждого диаметра. К полученному значению прибавляют примерно 5 % на неучтенные расходы.

Укладка металла по основной ширине

Схемы армирования монолитной плиты фундамента по основной ширине предполагают постоянные размеры ячейки. Шаг прутьев принимается одинаковым независимо от расположения в плите и направления. Обычно он находится в пределах 200—400 мм. Чем тяжелее здание, тем чаще армируют монолитную плиту. Для кирпичного дома рекомендуется назначать расстояние 200 мм, для деревянного или каркасного можно взять большее значение шага. При этом важно помнить, что расстояние между параллельными прутами не может превышать толщину фундамента более чем в полтора раза.

Обычно и для верхнего, и для нижнего армирования используют одинаковые элементы. Но если есть необходимость уложить пруты разного диаметра, то те, которые имеют большее сечение укладывают снизу. Такое армирование плиты фундамента позволяет усилить конструкцию в нижней части. Именно там возникают наибольшие изгибающие силы.

Основные армирующие элементы

С торцов вязка арматуры для фундамента предполагает укладку П-образных стержней. Они необходимы для того, чтобы связать в одну систему верхнюю и нижнюю часть армирования. Также они предотвращают разрушение конструкции из-за крутящих моментов.

Зоны продавливания

Связанный каркас должен учитывать места, в которых изгиб ощущается больше всего. В жилом доме зонами продавливания будут участки, в которых опираются стены. Укладка металла в этой области осуществляется с меньшим шагом. Это значит, что потребуется больше прутов.

Например, если для основной ширины фундамента использован шаг 200 мм, то для зон продавливания рекомендуется уменьшить это значение до 100 мм.
При необходимости каркас плиты можно связать с каркасом монолитной стены подвала. Для этого на этапе возведения фундамента предусматривают выпуски металлических стержней.

Армирование монолитной плиты перекрытия

Расчет арматуры для плиты перекрытия в частном строительстве выполняется редко. Это достаточно сложная процедура, выполнить которую сможет не каждый инженер. Чтобы заармировать плиту перекрытия, нужно учесть ее конструкцию. Она бывает следующих типов:

  • сплошное;
  • ребристое:
  • по профлисту.

Последний вариант рекомендуется при выполнении работ самостоятельно. В этом случае нет необходимости устанавливать опалубку. Кроме того, за счет использования металлического листа повышается несущая способность конструкции. Самая низкая вероятность ошибок достигается при изготовлении перекрытия по профлисту. Стоит отметить, что оно является одним из вариантов ребристой плиты.

Перекрытие с ребрами залить непрофессионалу может быть проблематично. Но такой вариант позволяет существенно сократить расход бетона. Конструкция в этом случае подразумевает наличие усиленных ребер и участков между ними.

(function(w, d, n, s, t) <
w[n] = w[n] || [];
w[n].push(function() <
Ya.Context.AdvManager.render( <
blockId: “R-A-510923-1”,
renderTo: “yandex_rtb_R-A-510923-1”,
async: true
>);
>);
t = d.getElementsByTagName(“script”)[0];
s = d.createElement(“script”);
s.type = “text/javascript”;
s.src = “//an.yandex.ru/system/context.js”;
s.async = true;
t.parentNode.insertBefore(s, t);
>)(this, this.document, “yandexContextAsyncCallbacks”);

Еще одни вариант — изготовит сплошную плиту перекрытия. В этом случае армирование и технология похожи на процесс изготовления плитного фундамента. Основное отличие — класс используемого бетона. Для монолитного перекрытия он не может быть ниже В25.

Стоит рассмотреть несколько вариантов армирования.

Перекрытие по профлисту

В этом случае рекомендуется взять профилированный лист марки Н-60 или Н-75. Они обладают хорошей несущей способностью. Материал монтируется так, чтобы при заливке образовались ребра, обращенные вниз. Далее проектируется монолитная плита перекрытия, армирование состоит из двух частей:

  • рабочие стержни в ребрах;
  • сетка в верхней части.

Армирование плиты перекрытия по профлисту

Наиболее распространенный вариант, когда в ребрах устанавливают по одному стержню диаметром 12 или 14 мм. Для монтажа прутов подойдут инвентарные пластиковые фиксаторы. Если нужно перекрыть большой пролет, в ребро может устанавливаться каркас из двух стержней, которые связаны между собой вертикальным хомутом.

В верхней части плиты обычно укладывается противоусадочная сетка. Для ее изготовления используют элементы диаметром 5 мм. Размеры ячейки принимаются 100х100 мм.

Сплошная плита

Толщина перекрытия чаще всего принимается равной 200 мм. Армирующий каркас в этом случае включает в себя две сетки, расположенные друг над другом. Такие сетки нужно связать из стержней диаметром 10 мм. В середине пролета устанавливают дополнительные пруты усиливающей арматуры в нижней части. Длина такого элемента назначается 400 мм или более. Шаг дополнительных прутов принимают таким же, как шаг основных.

В местах опирания нужно тоже предусмотреть дополнительное армирование. Но располагают его в верхней части. Также по торцам плиты нужны П-образные хомуты, такие же как в фундаментной плите.

Пример армирования плиты перекрытия

Расчет армирования плиты перекрытия по весу для каждого диаметра стоит выполнить до закупки материала. Это позволит избежать перерасхода средств. К полученной цифре прибавляют запас на неучтенные расходы, примерно 5%.

Вязка арматуры монолитной плиты

Для соединения элементов каркаса между собой пользуются двумя способами: сварка и связывание. Лучше вязать арматуру для монолитной плиты, поскольку сварка в условиях строительной площадки может привести к ослаблению конструкции.

Для выполнения работ используют отожженную проволоку, диаметром от 1 до 1,4 мм. Длину заготовок обычно принимают равной 20 см. Существует два типа инструмента для вязания каркасов:

  • крючок;
  • пистолет.

Второй вариант существенно ускорят процесс, снижает трудоемкость. Но для возведения дома своими руками большую популярность получил крючок. Для выполнения задачи рекомендуется заранее подготовить специальный шаблон по типу верстака. В качестве заготовки используют деревянную доску шириной от 30 до 50 мм и длинной до 3 м. На ней делают отверстия и углубления, которые соответствуют необходимому расположению арматурных прутов.

Моделирование перепада отметок плиты перекрытия

Рассмотрим случай в проектировании плит перекрытий, когда требуется выполнить устройство плит на разных отметках, но плиты должны быть соединены друг с другом монолитной стеной.

Особенность работы такой конструкции в том, что плиты, за счёт соединяющей их стены, вступают в совместную работу, и деформируются как балка двутаврового сечения, у которой полками служат сами плиты а стенкой – монолитная стена. Стенка будет воспринимать, преимущественно, касательные напряжения, плиты, в месте примыкания к стене, будут воспринимать мембранные усилия (сжатие и растяжение), тем самым обеспечивая работу двутавра на изгиб.

В качестве примера, рассмотрим конструкцию, изображённую на рисунке: плиты перекрытия, находящиеся на разных отметках, опираются на колонны, а в осях 2/А-Г, соединяются между собой монолитной стеной, которая, в свою очередь, опирается на монолитные стены в осях 2/А, 2/Г. Ввиду того, что конструкция целиком выполняется из монолитного железобетона, плиты в месте примыкания к стене образуют двутавровую балку с жёстким защемлением на опорах.

Для выполнения расчёта, к конструкции прикладывается нагрузка 0.6 т/м2 на поверхность плит. Моделирование выполняем в ПК САПФИР. В месте стыковки плит со стеной, необходимо получить согласованную сеть триангуляции, с шагом равным толщине стены, для этого, наиболее рационально, применить технологию, показанную в статье https://rflira.ru/kb/108/1216/

Расчёт модели в ПК ЛИРА САПР

На основании модели, выполненной в САПФИР, получаем модель в ПК ЛИРА САПР.

По результатам статического расчёта, получаем следующую картину деформации:

Анализ внутренних усилий в осях 2/Б-В

Если представить, что плиты, работающие совместно со стеной, образуют двутавровое сечение балки, то наибольший изгибающий момент, будет возникать в середине пролёта, а именно в осах 2/Б-В. Выделим фрагмент схемы, находящийся в середине пролёта.

Анализ внутренних усилий показывает, что в плитах наибольшую интенсивность имеют напряжения Ny, направленные, в рамках данной задачи, вдоль глобальной оси Y. Изгибающие моменты в направлении осей Х и Y незначительны. Исходя из этого, можно предположить, что при подборе арматуры, наибольшая площадь потребуется по направлению оси Y в верхней и нижней зоне плиты.

В стенке, внутренние усилия Ny, максимальны в месте примыкания к плитам. Изгибающий момент Мх, соизмерим с внутренним усилием Ny. На основании этого, можно предположить, что наибольшая площадь арматуры в стенах, потребуется по направлению оси Y в месте примыкания к плитам, а также по направлению глобальной оси Z (местной оси Х1 стены), в зоне растяжения.

Анализ внутренних усилий в осях 2/А

Поскольку опирание балки на стены жёсткое, то на опорах будет возникать максимальный изгибающий момент в верхней зоне, а также, максимальная поперечная сила. Проанализируем внутренние усилия в опорной зоне.

Анализ внутренних усилий показывает, что наибольшая концентрация напряжений, происходит в месте опирания конструкции на нижестоящую стену. Напряжения Nx, Ny имеют там наибольшую интенсивность, в плите и стенке двутавра.

Дополнительно, в стенке наблюдается большое значение внутренних усилий Nx в месте опирания её на противоположный край нижестоящей стены. Интенсивность изгибающих моментов не сопоставима с интенсивностью напряжений Nx, Ny, так что они не должны оказать существенного влияния на результаты подбора арматуры.

Подбор армирования

Для подбора армирования, выполним настройку вариантов конструирования, а также материалов для расчёта ж/б конструкций. Расчёт выполняется по СП 63.13330.2018.

Выполним расчёт армирования конструкции. Проанализируем мозаики продольного армирования в стене и примыкающих участках плит. Поскольку результаты армирования симметричны, относительно оси проходящей через середину пролёта, отобразим на экране результаты для участка длиной 3/5 пролёта от опоры.

Наибольшая интенсивность армирования по Y у нижней грани наблюдается в нижней плите в середине пролёта, т.е. в местах с наибольшими растягивающими напряжениями.

На опорных участках, наибольшая интенсивность армирования, наблюдается в верхней части стены. В верхней плите, на опорном участке, также требуется установить продольную арматуру, вдоль оси Y, у нижней грани, но её площадь меньше, чем площадь арматуры в стене.

Большая интенсивность армирования по оси Y в верхней зоне, наблюдается в середине пролёта, в нижней плите. В верхней плите, наибольшая интенсивность, наблюдается на опоре.

В плитах, наибольшее армирование по оси Х у нижней грани, наблюдается в нижней плите, на участках не примыкающих к стене.

В стене, армирование по Х у нижней (ближняя) грани, увеличивается по мере приближениям к опорной зоне, что соответствует работе балки на поперечную силу.

В плитах, наибольшая площадь арматуры по Х у верхней грани, требуется в верхней плите на опорных участках. Также, наблюдаются участки с большой интенсивностью армирования в нижней плите, в месте непосредственного примыкания к стене, а также, в месте опирания на нижестоящую конструкцию.

Максимальное армирование стены наблюдается в опорной зоне.

Разная интенсивность армирования стены у верхней (ближняя) и нижней (дальняя) граней, обусловлена действием изгибающего момента, передаваемого на стену плитами перекрытия, который вызывает растяжение нижней (ближняя) грани плиты.

В плитах, в пролёте и в опорной зоне, потребовалось установить армирование по расчёту в верхней и нижней зонах плиты, что обусловлено действием напряжений Nx, Ny.

Армирование плиты перекрытия: материалы и правила расчета

  1. Назначение
  2. Требования
  3. Какие материалы используются?
  4. Особенности расчета
  5. Основные правила
  6. Как армировать?
  7. Инструкция по армированию

Армирование безбалочной монолитной панели перекрытия (внутренняя горизонтальная ограждающая конструкция) является обязательным технологическим процессом их изготовления. Арматура в структуре конструкции, выполненной из бетона, берет на себя нагрузку и увеличивает прочностные свойства изделия.

Назначение

Предназначение армирования заключается в том, чтобы повысить способность выдерживать нагрузку конструкции, уменьшить возможность формирования трещин, появляющихся по причине температурных скачков. Для подобных задач используется материал с высокими прочностными свойствами – фибра, стеклонить, базальтоволокно, сталь. С целью исключения преждевременной коррозии и увеличения износоустойчивости строений начали практиковать метод армирования.

Требования

Упрочнение монолитной панели перекрытия является ответственным процессом, к реализации которого предъявляется ряд условий. При осуществлении работ по созданию армированной ж/б панели перекрытия необходимо придерживаться следующих рекомендаций.

  • Для соединения металлических прутьев следует применять вязальную проволоку сечением 1,2-1,6 миллиметров. Применение электросварки неприемлемо по причине изменения строения металла в точках сопряжения.
  • Нужно предусматривать необходимую толщину (высоту) бетонного массива перекрытия относительно дистанции промеж стен, воспринимающих нагрузку. Высота железобетонной панели в 30 раз меньше дистанции промеж опор. В то же время наименьшая толщина панели равняется не меньше 15 сантиметров.
  • Укладка компонентов железного остова с учетом габаритов перекрытия осуществляется по вертикали. При наименьшей высоте панели раскладка арматуры производится в один слой. При высоте свыше 15 сантиметров производится упрочненное армирование двумя слоями.
  • Для заливки в опалубочную конструкцию используется бетонная смесь марки М200 и выше. Бетон этих марок имеет превосходные эксплуатационные свойства, может выдерживать существенные нагрузки и отличается разумной стоимостью.
  • Для сборки стальной решетки используются прутки арматуры сечением 8–12 миллиметров. При реализации двухслойного армирования практикуется повышенный размер сечения металлического профиля в нижнем ряду. Допускается вариант применения готовой сетки.
  • Опалубка изготавливается из водозащищенной фанеры либо обработанных путем строгания досок. Стыки тщательным образом герметизируют. Для укрепления опалубки используются железные стойки раздвижного типа либо столбы из древесины диаметром до 20 сантиметров.

Выполнение обозначенных требований при осуществлении процессов по армированию гарантирует прочностные характеристики устраиваемой конструкции. Армированная панель, изготовленная с соблюдением технических условий, будет служить не одно десятилетие.

Какие материалы используются?

Кроме всего прочего, нужно побеспокоиться о том, чтобы правильно подобрать материал, который можно использовать. Для изготовления плиты перекрытия, как было сказано выше, предпочтительнее применять цемент марки 200 и выше. Поскольку как раз этот цемент характеризуется наиболее высокой степенью прочности – показателем, который в особенности имеет значение в приведенном случае. Как-никак масса панели равняется ориентировочно 500 кг/м2.

В роли арматуры для плиты применяются в основном металлические прутки класса А500С. Горячекатанный арматурный прокат периодического профиля. Диаметр прутков устанавливает осуществленный в разработанном плане расчет. Как правило, диаметр прутьев для перекрытия находится в границах 8–16 миллиметров.

Ввиду того что монолитное перекрытие главным образом работает на излом, базисной является конкретно нижележащая арматура, которая вытягивается при эксплуатации. Для ее создания в отдельных эпизодах применяются прутья с большим сечением, чем для верхнего слоя. В зонах сопряжения панелей с опорами положение немножко иное. Тут на верхние прутки аналогично воздействуют внушительные нагрузки, в связи с этим ее в дополнение усиливают. Когда плита базируется на колоннах или между опорами, имеющими довольно-таки большие пролеты, применяется арматура, располагаемая в поперечном направлении армируемой конструкции, класс которой А240С либо А240 (строительная арматура с гладкой поверхностью).

Особенности расчета

Грамотный расчет монолитной панели для перекрытия и ее армирования несет в себе много положительных качеств.

  • Горизонтальная конструкция из монолитной панели будет иметь высокую предельную нагрузку.
  • Верный расчет предоставит оптимизированный вариант подбора арматуры, высоты панели, марки и объема бетона. Все это в общей сложности дает возможность сэкономить время и денежные средства.
  • Высокопрофессиональный расчет позволяет в роли опоры монолитной конструкции эксплуатировать не только стенки, но равным образом и колонны, находящиеся внутри объекта.
  • Калькуляция выдаст все требуемые объемы работ и их стоимостное выражение.
  • Можно высчитать панель перекрытия, которая не соответствует стандарту конфигурации.
  • Срок эксплуатации конструкции, сооруженной в полном соотношении с расчетами армирования, по существу безграничный.

Основные правила

Произвести профессиональный точный расчет способен отнюдь не каждый. Однако имеются единые стандарты изготовления и усиления монолитного перекрытия. На основании этих правил высота панели должна составлять 1/30 расстояния между смежными опорами пролета. Например, при протяженности пролета 600 сантиметров высота готовой монолитной конструкции будет равняться 20 сантиметрам. Увеличение высоты повлечет лишь перерасход дорогого бетона.

Когда длина перекрываемых проемов не превосходит 7 метров, то следует использовать стандартный метод расчета. По данному способу монолитную панель требуется армировать двумя слоями арматуры. Оба слоя закладывают арматурными прутками А-500С, имеющими диаметр 10 миллиметров. Прутья кладут с интервалом приблизительно 150–200 миллиметров. Соединение прутков в каркас с размером клетки 150–200 миллиметров осуществляется мягкой вязальной проволокой с сечением от 1,2 до 3 миллиметров. Можно панель усиливать посредством сварной типовой сетки, наличествующей в продаже.

При расчете габаритов монолитной конструкции необходимо учитывать величину захвата. Это та часть панели, которая будет налегать на стенку. При кирпичных стенах размер захвата (рабочая поверхность) должен составлять 15 сантиметров либо немножко больше. Для стенок из пенобетона этот размер равняется 25 и более сантиметрам. Арматурные прутья отрезаются таким образом, чтобы их концы были покрыты слоем бетонной смеси высотой не меньше 25 миллиметров.

Простейшее вычисление выявляет, что при грамотном армировании на один кв. метр монолитной бетонной плиты высотой 20 сантиметров расход ориентировочно составляет 1 м3 бетона марки М200 и выше (желательно М350), 36 килограммов арматуры марки А500С, обладающей площадью сечения 10 миллиметров. Это основные правила. Однако тщательный расчет в силах выполнить лишь специалист.

Как армировать?

Нагрузка на безбалочные монолитные панели идет вертикально вниз и распространяется пропорционально по всей площади. Выходит, что верхняя сторона армирующего каркаса берет на себя сдавливающие нагрузки, а нижний – растягивающие. Прутки укладывают в опалубочную конструкцию и связывают друг с другом посредством мягкой вязальной проволоки. Для нижележащего остова практикуют толстые металлические стержни. Верхний слой составляют прутья с меньшим сечением.

По завершении вязки армирующих сеток следует верно разнести их по высоте.

При высоте конструкции монолитного перекрытия от 180 до 200 миллиметров длина перекрываемого пролета способна простираться до 6 метров. В подобных панелях дистанция между нижней и верхней армирующими сетками выдерживают интервал 100–125 мм. Для этого практикуют фиксаторы, которые делают из остатков арматуры диаметром 10 миллиметров. Длинные стержни выгибают в форме буквы «Л» и размещают с интервалом в один метр. В местах, где требуется упрочнение панели перекрытия, дистанцию уменьшают до 40 см. Как правило, это середина зоны сопряжения с опорами и области наибольшей нагрузки.

Под нижележащим армирующим каркасом панели должен сохраниться пласт бетона приблизительно в 25–30 миллиметров либо немного больше. Аналогичным слоем заливается верхняя армирующая сетка. Для выдерживания этого размера под места перекрещивания нижних прутков арматуры ставятся пластмассовые подставки с интервалом примерно один метр. Такие приспособления реализуются в магазинах стройматериалов. Их можно заместить брусками из древесины, приколоченными либо прикрученными к опалубке посредством саморезов. Если не зафиксировать их расположение подобным типом, то они способны всплыть при наполнении формы раствором бетона.